Skip to main content
Log in

Improved detection and recognition of glycoproteins using fluorescent polymers with a molecular imprint based on glycopeptides

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Highly specific novel glycopeptide-based fluorescent molecularly imprinting polymers (g-FMIPs) were constructed to recognize and determine the target glycoprotein in complex biological samples. The glycopeptide of ovalbumin (OVA), with the unique structural characteristics of glycan and peptide, and potential application in improving the specificity recognition of g-FMIPs, was selected as the template molecule. The nitrogen-doped graphene quantum dots (N-GQDs) were introduced for fluorescence response. The obtained g-FMIPs possessed rapid binding kinetics and high adsorption capacity. Notably, the g-FMIPs exhibited remarkable selectivity and sensitivity with a high imprinting factor of 6.57, good linearity of 0.625 − 5.00 μM, and limit of detection of 0.208 μM. After treatment with g-FMIPs, the concentration of OVA in eluted solution was 1.07 μM. The obtained recoveries at 1.43 μM, 2.86 μM, and 4.29 μM spiked concentrations were 97.2%, 93.5%, and 101%, respectively, and the relative standard deviations were 2.6%, 4.2%, and 1.1%, respectively. In summary, the proposed strategy will expand the MIPs construction method and its application prospects in precision recognition and sensitive detection of trace glycoproteins from complex biosamples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xing RR, Wang SS, Bie ZJ, He H, Liu Z (2017) Preparation of molecularly imprinted polymers specific to glycoproteins, glycans and monosaccharides via boronate affinity controllable-oriented surface imprinting. Nat Protoc 12:964–987. https://doi.org/10.1038/nprot.2017.015

    Article  CAS  PubMed  Google Scholar 

  2. Li DJ, Tu TY, Wu XY (2018) Efficient preparation of template immobilization-based boronate affinity surface-imprinted silica nanoparticles using poly(4-aminobenzyl alcohol) as an imprinting coating for glycoprotein recognition. Anal Methods 10:4419–4429. https://doi.org/10.1039/c8ay00632f

    Article  CAS  Google Scholar 

  3. Lai YX, Zhang CX, Deng Y, Yang GJ, Li S, Tang CL, He NY (2019) A novel α-fetoprotein-MIP immunosensor based on AuNPs/PTh modified glass carbon electrode. Chin Chem Lett 30:160–162. https://doi.org/10.1016/j.cclet.2018.07.011

    Article  CAS  Google Scholar 

  4. Song YJ, Li WJ, Ma CY, Sun Y, Qiao JW, Li HL, Hong CL (2020) First use of inorganic copper silicate-transduced enzyme-free electrochemical immunosensor for carcinoembryonic antigen detection. Sens Actuators B Chem 319:128311. https://doi.org/10.1016/j.snb.2020.128311

    Article  CAS  Google Scholar 

  5. Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5:845–856. https://doi.org/10.1038/nrc1739

    Article  CAS  PubMed  Google Scholar 

  6. Ma YY, Li XL, Li W, Liu Z (2018) Glycan-imprinted magnetic nanoparticle-based SELEX for efficient screening of glycoprotein-binding aptamers. ACS Appl Mater Interfaces 10:40918–40926. https://doi.org/10.1021/acsami.8b14441

    Article  CAS  PubMed  Google Scholar 

  7. Zhou LL, Wang YJ, Xing RR, Chen J, Liu J, Li W, Liu Z (2019) Orthogonal dual molecularly imprinted polymer-based plasmonic immunosandwich assay: a double characteristic recognition strategy for specific detection of glycoproteins. Biosens Bioelectron 145:111729. https://doi.org/10.1016/j.bios.2019.111729

    Article  CAS  PubMed  Google Scholar 

  8. Carneiro MCCG, Sousa-Castillo A, Correa-Duarte MA, Sales MGF (2019) Dual biorecognition by combining molecularly imprinted polymer and antibody in SERS detection: application to carcinoembryonic antigen. Biosens Bioelectron 146:111761. https://doi.org/10.1016/j.bios.2019.111761

    Article  CAS  PubMed  Google Scholar 

  9. Li SW, Yang KG, Liu JX, Jiang B, Zhang LH, Zhang YK (2015) Surface-imprinted nanoparticles prepared with a His-tag-anchored epitope as the template. Anal Chem 87:4617–4620. https://doi.org/10.1021/ac5047246

    Article  CAS  PubMed  Google Scholar 

  10. Zhao MH, Huang S, Xie HY, Wang JY, Zhao XL, Li MY, Zhao MP (2020) Construction of specific and reversible nanoreceptors for proteins via sequential surface-imprinting strategy. Anal Chem 92:10540–10547. https://doi.org/10.1021/acs.analchem.0c01366

    Article  CAS  PubMed  Google Scholar 

  11. Tawfik SM, Elmasry MR, Sharipov M, Azizov S, Lee CH, Lee YI (2020) Dual emission nonionic molecular imprinting conjugated polythiophenes-based paper devices and their nanofibers for point-of-care biomarkers detection. Biosens Bioelectron 160:112211. https://doi.org/10.1016/j.bios.2020.112211

    Article  CAS  PubMed  Google Scholar 

  12. Sun C, Pan L, Zhang L, Huang J, Yao D, Wang CZ, Zhang Y, Jiang N, Chen L, Yuan CS (2019) A biomimetic fluorescent nanosensor based on imprinted polymers modified with carbon dots for sensitive detection of alpha-fetoprotein in clinical samples. Analyst 144:6760–6772. https://doi.org/10.1039/c9an01065c

    Article  CAS  PubMed  Google Scholar 

  13. Wei JR, Ni YL, Zhang W, Zhang ZQ, Zhang J (2017) Detection of glycoprotein through fluorescent boronic acid-based molecularly imprinted polymer. Anal Chim Acta 960:110–116. https://doi.org/10.1016/j.aca.2016.12.046

    Article  CAS  PubMed  Google Scholar 

  14. Dong YR, Li W, Gu ZK, Xing R, Ma YY, Zhang Q, Liu Z (2019) Inhibition of HER2-positive breast cancer growth by blocking the HER2 signaling pathway with HER2-glycan-imprinted nanoparticles. Angew Chem Int Ed 58:10621–10625. https://doi.org/10.1002/anie.201904860

    Article  CAS  Google Scholar 

  15. Xie XY, Hu Q, Ke RF, Zhen XY, Bu YS, Wang SC (2019) Facile preparation of photonic and magnetic dual responsive protein imprinted nanomaterial for specific recognition of bovine hemoglobin. Chem Eng J 371:130–137. https://doi.org/10.1016/j.cej.2019.04.019

    Article  CAS  Google Scholar 

  16. Yang Q, Li JH, Wang XY, Peng HL, Xiong H, Chen LX (2018) Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis. Biosens Bioelectron 112:54–71. https://doi.org/10.1016/j.bios.2018.04.028

    Article  CAS  PubMed  Google Scholar 

  17. Lu HZ, Xu SF (2020) Ultrasensitive turn on molecularly imprinted fluorescence sensor for glycoprotein detection based on nanoparticles signal amplification. Sens Actuators B Chem 306:127566. https://doi.org/10.1016/j.snb.2019.127566

    Article  CAS  Google Scholar 

  18. Arabi M, Ostovan A, Li JH, Wang XY, Zhang ZY, Choo J, Chen LX (2021) Molecular imprinting: green perspectives and strategies. Adv Mater 33:2100543. https://doi.org/10.1002/adma.202100543

    Article  CAS  Google Scholar 

  19. Arabi M, Ostovan A, Bagheri AR, Guo XT, Wang LY, Li JH, Wang XY, Li BW, Chen LX (2020) Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. TrAC Trends Anal Chem 128:115923. https://doi.org/10.1016/j.trac.2020.115923

    Article  CAS  Google Scholar 

  20. Gholami H, Ghaedi M, Ostovan A, Arabi M, Bagheri AR (2019) Preparation of hollow porous molecularly imprinted and aluminum(III) doped silica nanospheres for extraction of the drugs valsartan and losartan prior to their quantitation by HPLC. Microchim Acta 186:702. https://doi.org/10.1007/s00604-019-3794-x

    Article  CAS  Google Scholar 

  21. Arabi M, Ostovan A, Zhang ZY, Wang YQ, Mei RC, Fu LW, Wang XY, Ma JP, Chen LX (2021) Label-free SERS detection of Raman-inactive protein biomarkers by Raman reporter indicator: toward ultrasensitivity and universality. Biosens Bioelectron 174:112825. https://doi.org/10.1016/j.bios.2020.112825

    Article  CAS  PubMed  Google Scholar 

  22. Qin YT, Peng H, He XW, Li WY, Zhang YK (2019) Highly effective drug delivery and cell imaging using fluorescent double-imprinted nanoparticles by targeting recognition of the epitope of membrane protein. Anal Chem 91:12696–12703. https://doi.org/10.1021/acs.analchem.9b02123

    Article  CAS  PubMed  Google Scholar 

  23. Bie ZJ, Chen Y, Ye J, Wang SS, Liu Z (2015) Boronate-affinity glycan-oriented surface imprinting: a new strategy to mimic lectins for the recognition of an intact glycoprotein and its characteristic fragments. Angew Chem Int Ed 54:10211–10215. https://doi.org/10.1002/anie.201503066

    Article  CAS  Google Scholar 

  24. Li WY, Ma YY, Guo ZC, Xing RR, Liu Z (2020) Efficient screening of glycan-specific aptamers using a glycosylated peptide as a scaffold. Anal Chem 93:956–963. https://doi.org/10.1021/acs.analchem.0c03675

    Article  CAS  PubMed  Google Scholar 

  25. Bie ZJ, Xing RR, He XP, Ma YY, Chen Y, Liu Z (2018) Precision imprinting of glycopeptides for facile preparation of glycan-specific artificial antibodies. Anal Chem 90:9845–9852. https://doi.org/10.1021/acs.analchem.8b01903

    Article  CAS  PubMed  Google Scholar 

  26. He PY, Zhu HJ, Ma Y, Li N, Niu XH, Wei MB, Pan JM (2019) Rational design and fabrication of surface molecularly imprinted polymers based on multi-boronic acid sites for selective capture glycoproteins. Chem Eng J 367:55–63. https://doi.org/10.1016/j.cej.2019.02.140

    Article  CAS  Google Scholar 

  27. Chen GS, Kou XX, Huang SM, Huang SY, Zhang R, Liu C, Shen J, Zhu F, Ouyang GF (2018) Allochroic-graphene oxide linked 3D oriented surface imprinting strategy for glycoproteins assays. Adv Funct Mater 28:1804129. https://doi.org/10.1002/adfm.201804129

    Article  CAS  Google Scholar 

  28. Qu D, Zheng M, Zhang LG, Zhao HF, Xie ZG, Jing XB, Haddad RE, Fan HY, Sun ZC (2015) Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci Rep 5:7998. https://doi.org/10.1038/srep07998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang YC, Luo J, Liu XY (2020) Fluorescent molecularly imprinted nanoparticles with boronate affinity for selective glycoprotein detection. J Mater Chem B 8:6469–6480. https://doi.org/10.1039/c9tb02648g

    Article  CAS  PubMed  Google Scholar 

  30. Li S, Qin Y, Zhong G, Cai C, Chen X, Chen C (2018) Highly efficient separation of glycoprotein by dual-functional magnetic metal−organic framework with hydrophilicity and boronic acid affinity. ACS Appl Mater Inter 10:27612–27620. https://doi.org/10.1021/acsami.8b07671

    Article  CAS  Google Scholar 

  31. Zhu SJ, Meng QN, Wang L, Zhang JH, Song YB, Jin H, Zhang K, Sun HC, Wang HY, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed 52:3953–3957. https://doi.org/10.1002/anie.201300519

    Article  CAS  Google Scholar 

  32. Luo LH, Zhang F, Chen CY, Cai CQ (2019) Visual simultaneous detection of hepatitis A and B viruses based on a multifunctional molecularly imprinted fluorescence sensor. Anal Chem 91:15748–15756. https://doi.org/10.1021/acs.analchem.9b04001

    Article  CAS  PubMed  Google Scholar 

  33. Yang Q, Li CY, Li JH, Wang XY, Arabi M, Peng HL, Xiong H, Chen LX (2020) Rational construction of a triple emission molecular imprinting sensor for accurate naked-eye detection of folic acid. Nanoscale 12:6529–6536. https://doi.org/10.1039/d0nr00765j

    Article  CAS  PubMed  Google Scholar 

  34. Yan M, Wu Y, Zhang K, Lin R, Jia S, Lu J, Xing W (2021) Multifunctional-imprinted nanocomposite membranes with thermo-responsive biocompatibility for selective/controllable recognition and separation application. J Colloid Interf Sci 582:991–1002. https://doi.org/10.1016/j.jcis.2020.08.108

    Article  CAS  Google Scholar 

  35. Sun XY, Ma RT, Chen J, Shi YP (2018) Synthesis of magnetic molecularly imprinted nanoparticles with multiple recognition sites for the simultaneous and selective capture of two glycoproteins. J Mater Chem B 6:688–696. https://doi.org/10.1039/c7tb03001k

    Article  CAS  PubMed  Google Scholar 

  36. Xie J, Zhong G, Cai C, Chen C, Chen X (2017) Rapid and efficient separation of glycoprotein using pH double-responsive imprinted magnetic microsphere. Talanta 169:98–103. https://doi.org/10.1016/j.talanta.2017.03.065

    Article  CAS  PubMed  Google Scholar 

  37. Wang P, Zhu H, Liu J, Ma Y, Yao J, Dai X, Pan J (2019) Double affinity integrated MIPs nanoparticles for specific separation of glycoproteins: a combination of synergistic multiple bindings and imprinting effect. Chem Eng J 358:143–152. https://doi.org/10.1016/j.cej.2018.09.168

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Jiamei Liu and Dr Ying Hao at the Instrument Analysis Center of Xi’an Jiaotong University for their assistance with XPS and FT-IR analysis.

Funding

We gratefully acknowledge the National Natural Science Foundation of China (No. 82073807) and the Opening Fund of National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology (No. K20201005) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xia Liu or Xiaoyu Xie.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 951 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yang, Y., Zhu, A. et al. Improved detection and recognition of glycoproteins using fluorescent polymers with a molecular imprint based on glycopeptides. Microchim Acta 188, 439 (2021). https://doi.org/10.1007/s00604-021-05099-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05099-z

Keywords

Navigation