Skip to main content
Log in

Preparation of hollow porous molecularly imprinted and aluminum(III) doped silica nanospheres for extraction of the drugs valsartan and losartan prior to their quantitation by HPLC

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Water compatible hollow porous molecularly imprinted nanospheres (HP-MINs) have been prepared for specific recognition and extraction of the blood pressure regulating drugs valsartan (VAL) and losartan (LOS). All synthetic steps were performed in aqueous medium and without consumption of organic solvents. The morphology and functionality of the materials were characterized by FT-IR, FE-SEM, and TEM techniques. The adsorption and selectivity experiments demonstrate that the HP-MINs possess a high binding capacity, fast kinetics, excellent water dispersibility and remarkable selectivity for VAL and LOS. The HP-MINs were utilized for dispersive solid phase extraction of VAL and LOS prior to their determination by HPLC-UV. Main variables and their interactions on extraction yield were optimized by multivariate analysis with least amount of experiments. Under optimized conditions, the method has a linear response in the 5–2000 μg L−1 concentration range of both VAL and LOS. The limits of detection are 1.5 μg L−1 for VAL and 1.4 μg L−1 for LOS.

Schematic representation of dispersive solid phase extraction (d-SPE) of valsartan (VAL) and losartan (LOS) from urine sample by hollow porous molecularly imprinted nanospheres (HP-MINs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gholami H, Ghaedi M, Arabi M, Ostovan A, Bagheri AR, Mohamedian H (2019) Application of molecularly imprinted biomembrane for advancement of matrix solid-phase dispersion for clean enrichment of parabens from powder sunscreen samples: optimization of chromatographic conditions and green approach. ACS Omega 4(2):3839–3849

    Article  CAS  Google Scholar 

  2. Chen L, Xu S, Li J (2011) Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev 40(5):2922–2942

    Article  CAS  PubMed  Google Scholar 

  3. Bagheri AR, Arabi M, Ghaedi M, Ostovan A, Wang X, Li J, Chen L (2019) Dummy molecularly imprinted polymers based on a green synthesis strategy for magnetic solid-phase extraction of acrylamide in food samples. Talanta 195:390–400

    Article  CAS  PubMed  Google Scholar 

  4. Chen L, Wang X, Lu W, Wu X, Li J (2016) Molecular imprinting: perspectives and applications. Chem Soc Rev 45(8):2137–2211

    Article  CAS  PubMed  Google Scholar 

  5. Xiao D, Jiang Y, Bi Y (2018) Molecularly imprinted polymers for the detection of illegal drugs and additives: a review. Microchim Acta 185(4):247

    Article  Google Scholar 

  6. Xu S, Chen L, Li J, Qin W, Ma J (2011) Preparation of hollow porous molecularly imprinted polymers and their applications to solid-phase extraction of triazines in soil samples. J Mater Chem 21(32):12047–12053

    Article  CAS  Google Scholar 

  7. Zhang Z, Xu S, Li J, Xiong H, Peng H, Chen L (2011) Selective solid-phase extraction of Sudan I in chilli sauce by single-hole hollow molecularly imprinted polymers. J Agric Food Chem 60(1):180–187

    Article  PubMed  Google Scholar 

  8. Li C, Ma Y, Niu H, Zhang H (2015) Hydrophilic hollow molecularly imprinted polymer microparticles with photo-and thermoresponsive template binding and release properties in aqueous media. ACS Appl Mater Interfaces 7(49):27340–27350

    Article  CAS  PubMed  Google Scholar 

  9. Ji S, Li T, Yang W, Shu C, Li D, Wang Y, Ding L (2018) A hollow porous molecularly imprinted polymer as a sorbent for the extraction of 7 macrolide antibiotics prior to their determination by HPLC-MS/MS. Microchim Acta 185(3):203

    Article  Google Scholar 

  10. Tang Y, Li M, Gao X, Liu X, Ma Y, Li Y, Xu Y, Li J (2016) Preconcentration of the antibiotic enrofloxacin using a hollow molecularly imprinted polymer, and its quantitation by HPLC. Microchim Acta 183(2):589–596

    Article  CAS  Google Scholar 

  11. Wang J, Liang Y, Jin Q, Hou J, Liu B, Li X, Chen W, Hayat T, Alsaedi A, Wang X (2017) Simultaneous removal of graphene oxide and chromium (VI) on the rare earth doped titanium dioxide coated carbon sphere composites. ACS Sustain Chem Eng 5(6):5550–5561

    Article  CAS  Google Scholar 

  12. Arabi M, Ghaedi M, Ostovan A (2017) Water compatible molecularly imprinted nanoparticles as a restricted access material for extraction of hippuric acid, a biological indicator of toluene exposure, from human urine. Microchim Acta 184(3):879–887

    Article  CAS  Google Scholar 

  13. Yang D-H, Shin MJ, Kim M, Kim Y-D, Kim H, Shin JS (2016) Molecularly imprinted titania microbeads for extraction of the metabolite 1-hydroxypyrene from urine prior to its determination by HPLC. Microchim Acta 183(5):1601–1609

    Article  CAS  Google Scholar 

  14. Ostovan A, Ghaedi M, Arabi M, Yang Q, Li J, Chen L (2018) Hydrophilic multi-template molecularly imprinted biopolymers based on a green synthesis strategy for determination of B-family vitamins. ACS Appl Mater Interfaces 10:4140–4150

    Article  CAS  PubMed  Google Scholar 

  15. Titirici M-M, Antonietti M (2010) Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem Soc Rev 39(1):103–116

    Article  CAS  PubMed  Google Scholar 

  16. Arabi M, Ghaedi M, Ostovan A (2017) Development of a lower toxic approach based on green synthesis of water-compatible molecularly imprinted nanoparticles for the extraction of hydrochlorothiazide from human urine. ACS Sustain Chem Eng 5(5):3775–3785

    Article  CAS  Google Scholar 

  17. Niu M, Pham-Huy C, He H (2016) Core-shell nanoparticles coated with molecularly imprinted polymers: a review. Microchim Acta 183(10):2677–2695

    Article  CAS  Google Scholar 

  18. Gholami H, Arabi M, Ghaedi M, Ostovan A, Bagheri AR (2019) Column packing elimination in matrix solid phase dispersion by using water compatible magnetic molecularly imprinted polymer for recognition of melamine from milk samples. J Chromatogr A 1594:13–22

    Article  CAS  PubMed  Google Scholar 

  19. Sevilla M, Fuertes AB (2009) Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem Eur J 15(16):4195–4203

    Article  CAS  PubMed  Google Scholar 

  20. Qin L, Jia X, Yang Y, Liu X (2016) Porous carbon microspheres: an excellent support to prepare surface molecularly imprinted polymers for selective removal of dibenzothiophene in fuel oil. Ind Eng Chem Res 55(6):1710–1719

    Article  CAS  Google Scholar 

  21. Atakay M, Omr ÇÇ, Salih B (2012) Amine-functionalized sol–gel-based lab-in-a-pipet-tip approach for the fast enrichment and specific purification of phosphopeptides in MALDI-MS applications. Anal Chem 84(6):2713–2720

    Article  CAS  PubMed  Google Scholar 

  22. Dai H, Xiao D, He H, Li H, Yuan D, Zhang C (2015) Synthesis and analytical applications of molecularly imprinted polymers on the surface of carbon nanotubes: a review. Microchim Acta 182(5–6):893–908

    Article  CAS  Google Scholar 

  23. Ren D, He J, Zhang H (2014) Synthesis, characterization and evaluation of hollow molecularly imprinted polymers for Sudan I. Anal Methods 6(9):3079–3085

    Article  CAS  Google Scholar 

  24. Pan J, Yin Y, Gan M, Meng M, Dai X, Wu R, Shi W, Yan Y (2015) Fabrication and evaluation of molecularly imprinted multi-hollow microspheres adsorbents with tunable inner pore structures derived from templating Pickering double emulsions. Chem Eng J 266:299–308

    Article  CAS  Google Scholar 

  25. Gong C-B, Yang Y-Z, Yang Y-H, Zheng A-X, Liu S, Tang Q (2016) Photoresponsive hollow molecularly imprinted polymer for the determination of trace bisphenol A in water. J Colloid Interface Sci 481:236–244

    Article  CAS  PubMed  Google Scholar 

  26. Analytical Methods Committee (1987) Recommendations for the definition, estimation and use of the detection limit. Analyst 112(2):199–204

    Article  Google Scholar 

  27. Levi M, Wuerzner G, Ezan E, Pruvost A (2009) Direct analysis of valsartan or candesartan in human plasma and urines by on-line solid phase extraction coupled to electrospray tandem mass spectrometry. J Chromatogr B 877(10):919–926

    Article  CAS  Google Scholar 

  28. Farajzadeh MA, Khorram P, Pazhohan A (2016) Simultaneous determination of atorvastatin and valsartan in human plasma by solid-based disperser liquid–liquid microextraction followed by high-performance liquid chromatography–diode array detection. J Chromatogr B 1017:62–69

    Article  Google Scholar 

  29. Farnoudian-Habibi A, Kangari S, Massoumi B, Jaymand M (2015) Determination of losartan potassium in the presence of hydrochlorothiazide via a combination of magnetic solid phase extraction and fluorometry techniques in urine samples. RSC Adv 5(124):102895–102903

    Article  CAS  Google Scholar 

  30. Polinko M, Riffel K, Song H, Lo M-W (2003) Simultaneous determination of losartan and EXP3174 in human plasma and urine utilizing liquid chromatography/tandem mass spectrometry. J Pharm Biomed Anal 33(1):73–84

    Article  CAS  PubMed  Google Scholar 

  31. Bagheri H, Shirzadmehr A, Rezaei M (2015) Designing and fabrication of new molecularly imprinted polymer-based potentiometric nano-graphene/ionic liquid/carbon paste electrode for the determination of losartan. J Mol Liq 212:96–102

    Article  CAS  Google Scholar 

  32. Pebdani AA, Shabani AMH, Dadfarnia S, Talebianpoor MS, Khodadoust S (2016) Preconcentration of valsartan by dispersive liquid–liquid microextraction based on solidification of floating organic drop and its determination in urine sample: central composite design. J Sep Sci 39(10):1935–1944

    Article  CAS  PubMed  Google Scholar 

  33. Ferreirós N, Iriarte G, Alonso RM, Jiménez RM, Ortíz E (2008) Separation and quantitation of several angiotensin II receptor antagonist drugs in human urine by a SPE–HPLC–DAD method. J Sep Sci 31(4):667–676

    Article  PubMed  Google Scholar 

  34. Cagigal E, Gonzalez L, Alonso R, Jimenez R (2001) Experimental design methodologies to optimise the spectrofluorimetric determination of losartan and valsartan in human urine. Talanta 54(6):1121–1133

    Article  CAS  PubMed  Google Scholar 

  35. Kristoffersen L, Øiestad EL, Opdal MS, Krogh M, Lundanes E, Christophersen AS (2007) Simultaneous determination of 6 beta-blockers, 3 calcium-channel antagonists, 4 angiotensin-II antagonists and 1 antiarrhytmic drug in post-mortem whole blood by automated solid phase extraction and liquid chromatography mass spectrometry: method development and robustness testing by experimental design. J Chromatogr B 850(1–2):147–160

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Graduate School and Research Council of Yasouj University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrorang Ghaedi.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 1.21 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami, H., Ghaedi, M., Ostovan, A. et al. Preparation of hollow porous molecularly imprinted and aluminum(III) doped silica nanospheres for extraction of the drugs valsartan and losartan prior to their quantitation by HPLC. Microchim Acta 186, 702 (2019). https://doi.org/10.1007/s00604-019-3794-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3794-x

Keywords

Navigation