Skip to main content
Log in

Epitope imprinted polymer nanoparticles containing fluorescent quantum dots for specific recognition of human serum albumin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Epitope imprinted polymer nanoparticles (EI-NPs) were prepared by one-pot polymerization of N-isopropylacrylamide in the presence of CdTe quantum dots and an epitope (consisting of amino acids 598 to 609) of human serum albumin (HSA). The resulting EI-NPs exhibit specific recognition ability and enable direct fluorescence quantification of HSA based on a fluorescence turn-on mode. The polymer was characterized by FT-IR, X-ray photoelectron spectroscopy, transmission electron microscopy and dynamic light scattering. The linear calibration graph was obtained in the range of 0.25–5 μmol · mL−1 with the detection limit of 44.3 nmol · mL−1. The EI-NPs were successfully applied to the direct fluorometric quantification of HSA in samples of human serum. Overall, this approach provides a promising tool to design functional fluorescent materials with protein recognition capability and specific applications in proteomics.

Epitope imprinted polymer nanoparticles containing fluorescent quantum dots were prepared for recognition and direct fluorescence quantification of human serum albumin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wulff G (2013) Fourty years of molecular imprinting in synthetic polymers: origin, features and perspectives. Microchim Acta 180(15–16):1359–1370. doi:10.1007/s00604-013-0992-9

    Article  CAS  Google Scholar 

  2. Dickert FL, Hayden O (1999) Imprinting with sensor development - On the way to synthetic antibodies. Fresenius J Anal Chem 364(6):506–511. doi:10.1007/s002160051376

    Article  CAS  Google Scholar 

  3. Bossi A, Piletsky SA, Piletska EV, Righetti PG, Turner APF (2001) Surface-grafted molecularly imprinted polymers for protein recognition. Anal Chem 73(21):5281–5286. doi:10.1021/ac0006526

    Article  CAS  Google Scholar 

  4. Ye L, Mosbach K (2001) Polymers recognizing biomolecules based on a combination of molecular imprinting and proximity scintillation: a new sensor concept. J Am Chem Soc 123(12):2901–2902. doi:10.1021/ja005896m

    Article  CAS  Google Scholar 

  5. Dai H, Xiao D, He H, Li H, Yuan D, Zhang C (2014) Synthesis and analytical applications of molecularly imprinted polymers on the surface of carbon nanotubes: a review. Microchim Acta. doi:10.1007/s00604-014-1376-5

    Google Scholar 

  6. Suedee R, Intakong W, Lieberzeit PA, Wanichapichart P, Chooto P, Dickert FL (2007) Trichloroacetic acid-imprinted polypyrrole film and its property in piezoelectric quartz crystal microbalance and electrochemical sensors to application for determination of haloacetic acids disinfection by-product in drinking water. J Appl Polym Sci 106(6):3861–3871. doi:10.1002/app-26934

    Article  CAS  Google Scholar 

  7. Hoshino Y, Koide H, Urakami T, Kanazawa H, Kodama T, Oku N, Shea KJ (2010) Recognition, neutralization, and clearance of target peptides in the bloodstream of living mice by molecularly imprinted polymer nanoparticles: a plastic antibody. J Am Chem Soc 132(19):6644. doi:10.1021/ja102148f

    Article  CAS  Google Scholar 

  8. Hayden O, Haderspock C, Krassnig S, Chen XH, Dickert FL (2006) Surface imprinting strategies for the detection of trypsin. Analyst 131(9):1044–1050. doi:10.1039/b608354b

    Article  CAS  Google Scholar 

  9. Pan J, Xue X, Wang J, Xie H, Wu Z (2009) Recognition property and preparation of Staphylococcus aureus protein A-imprinted polyacrylamide polymers by inverse-phase suspension and bulk polymerization. Polymer 50(11):2365–2372. doi:10.1016/j.polymer.2009.04.004

    Article  CAS  Google Scholar 

  10. Ge Y, Turner APF (2008) Too large to fit? Recent developments in macromolecular imprinting. Trends Biotechnol 26(4):218–224. doi:10.1016/j.tibtech.2008.01.001

    Article  CAS  Google Scholar 

  11. Zhao YY, Ma YX, Li H, Wang LY (2012) Composite QDs@MIP nanospheres for specific recognition and direct fluorescent quantification of pesticides in aqueous media. Anal Chem 84(1):386–395. doi:10.1021/ac202735v

    Article  CAS  Google Scholar 

  12. Ren X, Liu H, Chen L (2014) Fluorescent detection of chlorpyrifos using Mn(II)-doped ZnS quantum dots coated with a molecularly imprinted polymer. Microchim Acta. doi:10.1007/s00604-014-1317-3

    Google Scholar 

  13. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016. doi:10.1126/science.281.5385.2013

    Article  CAS  Google Scholar 

  14. Tu RY, Liu BH, Wang ZY, Gao DM, Wang F, Fang QL, Zhang ZP (2008) Amine-capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace TNT explosive. Anal Chem 80(9):3458–3465. doi:10.1021/ac800060f

    Article  CAS  Google Scholar 

  15. Lin HY, Ho MS, Lee MH (2009) Instant formation of molecularly imprinted poly(ethylene-co-vinyl alcohol)/quantum dot composite nanoparticles and their use in one-pot urinalysis. Biosens Bioelectron 25(3):579–586. doi:10.1016/j.bios.2009.03.039

    Article  CAS  Google Scholar 

  16. Tan L, Rang CC, Xu SY, Tang YW (2013) Selective room temperature phosphorescence sensing of target protein using Mn-doped ZnS QDs-embedded molecularly imprinted polymer. Biosens Bioelectron 48:216–223. doi:10.1016/j.bios.2013.04.024

    Article  CAS  Google Scholar 

  17. Tan L, Huang C, Peng RF, Tang YW, Li WM (2014) Development of hybrid organic–inorganic surface imprinted Mn-doped ZnS QDs and their application as a sensing material for target proteins. Biosens Bioelectron 61:506–511. doi:10.1016/j.bios.2014.06.004

    Article  CAS  Google Scholar 

  18. Zhang W, He XW, Chen Y, Li WY, Zhang YK (2011) Composite of CdTe quantum dots and molecularly imprinted polymer as a sensing material for cytochrome c. Biosens Bioelectron 26(5):2553–2558. doi:10.1016/j.bios.2010.11.004

    Article  CAS  Google Scholar 

  19. Zhang W, He XW, Chen Y, Li WY, Zhang YK (2012) Molecularly imprinted polymer anchored on the surface of denatured bovine serum albumin modified CdTe quantum dots as fluorescent artificial receptor for recognition of target protein. Biosens Bioelectron 31(1):84–89. doi:10.1016/j.bios.2011.09.042

    Article  Google Scholar 

  20. Yang YQ, He XW, Wang YZ, Li WY, Zhang YK (2014) Epitope imprinted polymer coating CdTe quantum dots for specific recognition and direct fluorescent quantification of the target protein bovine serum albumin. Biosens Bioelectron 54:266–272. doi:10.1016/j.bios.2013.11.004

    Article  CAS  Google Scholar 

  21. Aramwit P, Kasettratat N (2004) Evaluation of serum albumin utilization in inpatient at a private hospital in Bangkok. Yakugaku Zasshi-J Pharm Soc Jpn 124(9):631–634. doi:10.1248/yakushi.124.631

    Article  CAS  Google Scholar 

  22. Drummond GB, Ludlam CA (1999) Is albumin harmful? Br J Haematol 106(2):266–269. doi:10.1046/j.1365-2141.1999.01587.x

    Article  CAS  Google Scholar 

  23. Fielding BA, Price DA, Houlton CA (1983) Enzyme immunoassay for urinary albumin. Clin Chem 29(2):355–357

    CAS  Google Scholar 

  24. Muratsugu M, Ohta F, Miya Y, Hosokawa T, Kurosawa S, Kamo N, Ikeda H (1993) Quartz crystal microbalance for the detection of microgram quantities of human serum albumin: relationship between the frequency change and the mass of protein adsorbed. Anal Chem 65(20):2933–2937. doi:10.1021/ac00068a036

    Article  CAS  Google Scholar 

  25. Ci YX, Chen L (1988) Fluorimetric determination of human serum albumin with eriochrome cyanine R. Analyst 113(4):679–681. doi:10.1039/an9881300679

    Article  CAS  Google Scholar 

  26. Madrakian T, Bagheri H, Afkhami A (2014) Determination of human albumin in serum and urine samples by constant-energy synchronous fluorescence method. Luminescence: J Biol Chem Luminescence. doi:10.1002/bio.2788

    Google Scholar 

  27. Wang YY, Cheng P, Chan DW (2003) A simple affinity spin tube filter method for removing high-abundant common proteins or enriching low-abundant biomarkers for serum proteomic analysis. Proteomics 3(3):243–248. doi:10.1002/pmic.200390036

    Article  CAS  Google Scholar 

  28. Ahmed N, Barker G, Oliva K, Garfin D, Talmadge K, Georgiou H, Quinn M, Rice G (2003) An approach to remove albumin for the proteomic analysis of low abundance biomarkers in human serum. Proteomics 3(10):1980–1987. doi:10.1002/pmic.200300465

    Article  CAS  Google Scholar 

  29. Li DY, Wang YZ, Zhao XL, He XW, Li WY, Zhang YK (2014) Facile synthesis of ionic liquid functionalized silica-capped CdTe quantum dots for selective recognition and detection of hemoproteins. J Mat Chem B 2(34):5659–5665. doi:10.1039/c4tb00865k

    Article  CAS  Google Scholar 

  30. Nishino H, Huang CS, Shea KJ (2006) Selective protein capture by epitope imprinting. Angew Chem-Int Edit 45(15):2392–2396. doi:10.1002/anie.200503760

    Article  CAS  Google Scholar 

  31. Bossi AM, Sharma PS, Montana L, Zoccatelli G, Laub O, Levi R (2012) Fingerprint-imprinted polymer: rational selection of peptide epitope templates for the determination of proteins by molecularly imprinted polymers. Anal Chem 84(9):4036–4041. doi:10.1021/ac203422r

    Article  CAS  Google Scholar 

  32. Takahashi N, Takahashi Y, Blumberg BS, Putnam FW (1987) Amino acid substitutions in genetic variants of human serum albumin and in sequences inferred from molecular cloning. Proc Natl Acad Sci U S A 84(13):4413–4417. doi:10.1073/pnas.84.13.4413

    Article  CAS  Google Scholar 

  33. Meloun B, Moravek L, Kostka V (1975) Complete amino acid sequence of human serum albumin. FEBS Lett 58(1):134–137. doi:10.1016/0014-5793(75)80242-0

    Article  CAS  Google Scholar 

  34. Temple A, Yen TY, Gronert S (2006) Identification of specific protein carbonylation sites in model oxidations of human serum albumin. J Am Soc Mass Spectrom 17(8):1172–1180. doi:10.1016/j.jasms.2006.04.030

    Article  CAS  Google Scholar 

  35. He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358(6383):209–215. doi:10.1038/358209a0

    Article  CAS  Google Scholar 

  36. Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K (1999) Crystal structure of human serum albumin at 2.5 angstrom resolution. Protein Eng 12(6):439–446. doi:10.1093/protein/12.6.439

    Article  CAS  Google Scholar 

  37. Bhattacharya AA, Curry S, Franks NP (2000) Binding of the general anesthetics propofol and halothane to human serum albumin - High resolution crystal structures. J Biol Chem 275(49):38731–38738. doi:10.1074/jbc.M005460200

    Article  CAS  Google Scholar 

  38. Wang Y, Zheng JW, Zhang ZJ, Yuan CW, Fu DG (2009) CdTe nanocrystals as luminescent probes for detecting ATP, folic acid and L-cysteine in aqueous solution. Colloid Surf A-Physicochem Eng Asp 342(1–3):102–106. doi:10.1016/j.colsurfa.2009.04.020

    CAS  Google Scholar 

  39. Chao MR, Hu CW, Chen JL (2014) Fluorescent turn-on detection of cysteine using a molecularly imprinted polyacrylate linked to allylthiol-capped CdTe quantum dots. Microchim Acta 181(9–10):1085–1091. doi:10.1007/s00604-014-1209-6

    Article  CAS  Google Scholar 

  40. Li DY, Qin YP, Li HY, He XW, Li WY, Zhang YK (2015) A “turn-on” fluorescent receptor for detecting tyrosine phosphopeptide using the surface imprinting procedure and the epitope approach. Biosens Bioelectron 66:224–230. doi:10.1016/j.bios.2014.11.023

    Article  CAS  Google Scholar 

  41. Inoue Y, Kuwahara A, Ohmori K, Sunayama H, Ooya T, Takeuchi T (2013) Fluorescent molecularly imprinted polymer thin films for specific protein detection prepared with dansyl ethylenediamine-conjugated O-acryloyl L-hydroxyproline. Biosens Bioelectron 48:113–119. doi:10.1016/j.bios.2013.03.005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program) (Nos. 2011CB707703 and 2012CB910601) and the National Natural Science Foundation of China (Nos. 21275078 and 21475069).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-You Li or Yu-Kui Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1.14 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YZ., Li, DY., He, XW. et al. Epitope imprinted polymer nanoparticles containing fluorescent quantum dots for specific recognition of human serum albumin. Microchim Acta 182, 1465–1472 (2015). https://doi.org/10.1007/s00604-015-1464-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1464-1

Keywords

Navigation