Skip to main content
Log in

Ratiometric fluorescence determination of chlortetracycline based on the aggregation of copper nanoclusters triggered by aluminum ion

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The aggregation-induced emission (AIE) characteristic of copper nanoclusters (CuNC) was for the first time used to construct a ratiometric fluorescence probe (CuNC-Al3+) for detection of chlortetracycline (CTC). Aluminum ion (Al3+) can aggregate free CuNC and make it emit a bright and stable red fluorescence. A slight excess of Al3+ in CuNC-Al3+ solution can form a CTC-Al3+ complex to limit the conformational rotation of CTC molecule and enhance CTC fluorescence. So, the red fluorescence of CuNC-Al3+ probe and the enhanced CTC fluorescence are used as a reference signal and a response signal to detect CTC, respectively. The method developed shows a good linear relationship between the CTC concentration and the fluorescence intensity ratio (I495/I575) in the range 0.1-3.0 µM, and the detection limit is 25.3 nM (S/N = 3). In addition, the fluorescent color of CuNC-Al3+ probe changes from red to yellow-green as the concentration of CTC increases. Based on this observation, a fluorescent test paper has also been fabricated.

Graphical abstract

Schematic illustration of Al3+ inducing CuNC to produce AIE performance and detecting CTC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. An Y, Ren Y, Bick M et al (2020) Highly fluorescent copper nanoclusters for sensing and bioimaging[J]. Biosens Bioelectron 154:112078

    Article  CAS  Google Scholar 

  2. Qiao Z, Zhang J, Hai X et al (2021) Recent advances in templated synthesis of metal nanoclusters and their applications in biosensing, bioimaging and theranostics[J]. Biosens Bioelectron 176:112898

    Article  CAS  Google Scholar 

  3. Guo Y, Cao F, Lei X et al (2016) Fluorescent copper nanoparticles: recent advances in synthesis and applications for sensing metal ions[J]. Nanoscale 8(9):4852–4863

    Article  CAS  Google Scholar 

  4. Zhao Z, Li Y (2020) Developing fluorescent copper nanoclusters: Synthesis, properties, and applications[J]. Colloids Surf B Biointerfaces 195:111244

    Article  CAS  Google Scholar 

  5. Wu XM, Zhang JH, Feng ZS et al (2020) An ultra-sensitive “turn-off” fluorescent sensor for the trace detection of rifampicin based on glutathione-stabilized copper nanoclusters[J]. Analyst 145(4):1227–1235

    Article  CAS  Google Scholar 

  6. Wang JX, Lin XF, Shu T et al (2019) Self-assembly of metal nanoclusters for aggregation-induced emission[J]. Int J Mol Sci 20(8):18

    Google Scholar 

  7. Yuan J, Wang L, Wang Y et al (2020) Stimuli-responsive fluorescent nanoswitches: solvent-induced emission enhancement of copper nanoclusters[J]. Chemistry 26(16):3545–3554

    Article  CAS  Google Scholar 

  8. Wang DW, Wang ZQ, Wang XB et al (2020) Functionalized copper nanoclusters-based fluorescent probe with aggregation-induced emission property for selective detection of sulfide ions in food additives[J]. J Agric Food Chem 68(40):11301–11308

    Article  CAS  Google Scholar 

  9. Mei H, Ma YG, Wu HM et al (2021) Fluorescent and visual assay of H2O2 and glucose based on a highly sensitive copper nanoclusters-Ce(III) fluoroprobe[J]. Anal Bioanal Chem 413(8):2135–2146

    Article  CAS  Google Scholar 

  10. Huang Y, Feng H, Liu W et al (2017) Cation-driven luminescent self-assembled dots of copper nanoclusters with aggregation-induced emission for β-galactosidase activity monitoring[J]. J Mater Chem B 5(26):5120–5127

    Article  CAS  Google Scholar 

  11. Jalili R, Khataee A (2018) Aluminum(III) triggered aggregation-induced emission of glutathione-capped copper nanoclusters as a fluorescent probe for creatinine[J]. Mikrochim Acta 186(1):29

    Article  Google Scholar 

  12. Geng F, Zou C, Liu J et al (2019) Development of luminescent nanoswitch for sensing of alkaline phosphatase in human serum based onAl3+-PPi interaction and Cu NCs with AIE properties[J]. Anal Chim Acta 1076:131–137

    Article  CAS  Google Scholar 

  13. Huang XM, Lan MJ, Wang J et al (2020) A fluorescence signal amplification and specific energy transfer strategy for sensitive detection of beta-galactosidase based on the effects of AIE and host-guest recognition[J]. Biosens Bioelectron 169:7

    Google Scholar 

  14. Qu F, Wang B, Li K et al (2020) Copper nanoclusters@Al3+ complexes with strong and stable aggregation-induced emission for application in enzymatic determination of urea[J]. Microchim Acta 187(8):457

    Article  CAS  Google Scholar 

  15. Kong W, Gao Y, Yue Q et al (2020) Performance optimization of CdS precipitated graphene oxide/polyacrylic acid composite for efficient photodegradation of chlortetracycline[J]. J Hazard Mater 388:121780

    Article  CAS  Google Scholar 

  16. Zhao N, Liu K, Yan B et al (2021) Chlortetracycline hydrochloride removal by different biochar/Fe composites: a comparative study[J]. J Hazard Mater 403:123889

    Article  CAS  Google Scholar 

  17. Pulicharla R, Brar SK, Rouissi T et al (2017) Degradation of chlortetracycline in wastewater sludge by ultrasonication, Fenton oxidation, and ferro-sonication[J]. Ultrason Sonochem 34:332–342

    Article  CAS  Google Scholar 

  18. Guo J, Lu W, Zhang H et al (2021) Copper doped carbon dots as the multi-functional fluorescent sensing platform for tetracyclines and pH[J]. Sensors Actuators B Chem 330:129360

    Article  CAS  Google Scholar 

  19. Zhao F, Yang L, Chen L et al (2019) Bioaccumulation of antibiotics in crops under long-term manure application: occurrence, biomass response and human exposure[J]. Chemosphere 219:882–895

    Article  CAS  Google Scholar 

  20. (2020) Innovative dual-emitting ratiometric fluorescence sensor for tetracyclines detection based on boron nitride quantum dots and europium ions[J]. ACS Sustain Chem Eng 8(46):17185–17193

  21. Cinquina AL, Longo F, Anastasi G et al (2003) Validation of a high-performance liquid chromatography method for the determination of oxytetracycline, tetracycline, chlortetracycline and doxycycline in bovine milk and muscle[J]. J Chromatogr A 987(1):227–233

    Article  CAS  Google Scholar 

  22. Lian W, Huang J, Yu J et al (2012) A molecularly imprinted sensor based on β-cyclodextrin incorporated multiwalled carbon nanotube and gold nanoparticles-polyamide amine dendrimer nanocomposites combining with water-soluble chitosan derivative for the detection of chlortetracycline[J]. Food Control 26(2):620–627

    Article  CAS  Google Scholar 

  23. Liu Y, Zhu L, Luo Z et al (2013) Fabrication of molecular imprinted polymer sensor for chlortetracycline based on controlled electrochemical reduction of graphene oxide[J]. Sensors Actuators B Chem 185:438–444

    Article  CAS  Google Scholar 

  24. Huang L, Yu W, Guo X et al (2019) Chip-based multi-molecularly imprinted monolithic capillary array columns coated Fe3O4/GO for selective extraction and simultaneous determination of tetracycline, chlortetracycline and deoxytetracycline in eggs[J]. Microchem J 150:104097

    Article  CAS  Google Scholar 

  25. Díaz-Quiroz CA, Francisco Hernández-Chávez J, Ulloa-Mercado G et al (2018) Simultaneous quantification of antibiotics in wastewater from pig farms by capillary electrophoresis[J]. J Chromatogr B 1092:386–393

    Article  Google Scholar 

  26. Liu Y, Liu B, Huang P et al (2021) Concentration-dependent photoluminescence carbon dots for visual recognition and detection of three tetracyclines[J]. Anal Bioanal Chem 413:2565–2575

    Article  CAS  Google Scholar 

  27. Zhang W, Li XH, Liu QY et al (2020) Nitrogen-doped carbon dots from rhizobium as fluorescence probes for chlortetracycline hydrochloride[J]. Nanotechnology 31(44):8

    Google Scholar 

  28. Li R, Hou XY, Yuan M et al (2020) Carbon dots synthesized and its applications in the detection of chlortetracycline and water based on the aggregation-induced emission[J]. ChemistrySelect 5(2):649–654

    Article  CAS  Google Scholar 

  29. Si X-j, Wang H-l, Wu T-h et al (2020) Novel methods for the rapid detection of trace tetracyclines based on the fluorescence behaviours of Maillard reaction fluorescent nanoparticles[J]. RSC Adv 10(71):43256–43261

    Article  CAS  Google Scholar 

  30. Yu L, Chen HX, Yue J et al (2019) Metal-organic framework enhances aggregation-induced fluorescence of chlortetracycline and the application for detection[J]. Anal Chem 91(9):5913–5921

    Article  CAS  Google Scholar 

  31. Meng L, Lan CW, Liu ZH et al (2019) A novel ratiometric fluorescence probe for highly sensitive and specific detection of chlorotetracycline among tetracycline antibiotics[J]. Anal Chim Acta 1089:144–151

    Article  CAS  Google Scholar 

  32. Huang Y, Huang J, Wang Y et al (2020) Progressive aggregation-induced emission strategy for imaging of aluminum ions in cellular microenvironment[J]. Talanta 211:120699

    Article  CAS  Google Scholar 

  33. Guo XH, Zhou Y, Shi LH et al (2018) Luminescence emission of copper nanoclusters by ethanol-induced aggregation and aluminum ion-induced aggregation[J]. Acta Phys Chim Sin 34(7):818–824

    Article  CAS  Google Scholar 

  34. Lin L, Hu Y, Zhang L et al (2017) Photoluminescence light-up detection of zinc ion and imaging in living cells based on the aggregation induced emission enhancement of glutathione-capped copper nanoclusters[J]. Biosens Bioelectron 94:523–529

    Article  CAS  Google Scholar 

  35. Pulicharla R, Hegde K, Brar SK et al (2017) Tetracyclines metal complexation: Significance and fate of mutual existence in the environment[J]. Environ Pollut 221:1–14

    Article  CAS  Google Scholar 

  36. Leng F, Zhao XJ, Wang J et al (2013) Visual detection of tetracycline antibiotics with the turned on fluorescence induced by a metal-organic coordination polymer[J]. Talanta 107:396–401

    Article  CAS  Google Scholar 

  37. Zhou Y, Li C, Liu R, Chen Z, Li Li, Li W, He Y, Yuan L (2020) Label-free colorimetric detection of prothioconazole using gold nanoparticles based on one-step reaction. ACS Biomater Sci Eng 6(5):2805–2811

    Article  CAS  Google Scholar 

  38. Zu F, Yan F, Bai Z et al (2017) The quenching of the fluorescence of carbon dots: A review on mechanisms and applications[J]. Microchim Acta 184(7):1899–1914

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515012169, No. 2021A1515011513) and the National Natural Science Foundation of China (No. 81573678).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 632 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Ye, J., Duan, D. et al. Ratiometric fluorescence determination of chlortetracycline based on the aggregation of copper nanoclusters triggered by aluminum ion. Microchim Acta 189, 28 (2022). https://doi.org/10.1007/s00604-021-05093-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05093-5

Keywords

Navigation