Skip to main content
Log in

Core-shell structured Fe2O3/CeO2@MnO2 microspheres with abundant surface oxygen for sensitive solid-phase microextraction of polycyclic aromatic hydrocarbons from water

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Core-shell structured Fe2O3/CeO2@MnO2 microspheres were fabricated and used as solid-phase microextraction coating for determination of polycyclic aromatic hydrocarbons (PAHs) in water samples. XPS spectra demonstrated the generation of abundant surface oxygen on Fe2O3/CeO2@MnO2 microspheres, which provided binding sites for enhancement of analyte extraction. Under optimized conditions, the proposed method presented good linearity in the concentration range 0.04–100 ng mL−1, with low limits of detection varying from 0.38 to 3.57 ng L−1 for eight PAHs. Relative standard deviations for a single fiber and five batches of fibers were in the ranges of 4.1–8.2% and 7.1–11.4%, respectively. The proposed method was successfully used for determination of PAHs in real river water samples with recoveries ranging from 87.1 to 115.9%. The proposed method using as-prepared Fe2O3/CeO2@MnO2 microspheres as SPME coating exhibit significant potential for real sample analysis due to its excellent reproducibility, high sensitivity, and good linearity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145–2148

    Article  CAS  Google Scholar 

  2. Sereshti H, Duman O, Tunc S, Nouri N, Khorram P (2020) Nanosorbent-based solid phase microextraction techniques for the monitoring of emerging organic contaminants in water and wastewater samples. Microchim Acta 187:541

    Article  CAS  Google Scholar 

  3. Hou Y, Deng J, He K, Chen C, Yang Y (2020) Covalent organic frameworks-based solid-phase microextraction probe for rapid and ultrasensitive analysis of trace per- and polyfluoroalkyl substances using mass spectrometry. Anal Chem 92:10213–10217

    Article  CAS  PubMed  Google Scholar 

  4. Wei S, Xiao X, Wei L, Li L, Li G, Liu F, Xie J, Yu J, Zhong Y (2021) Development and comprehensive HS-SPME/GC-MS analysis optimization, comparison, and evaluation of different cabbage cultivars (Brassica oleracea L. var. capitata L.) volatile components. Food Chem 340:128166

    Article  CAS  PubMed  Google Scholar 

  5. Belinato JR, Grandy JJ, Khaled A, Suarez PAO, Pawliszyn J (2021) Overcoming matrix effects in the analysis of pyrethroids in honey by a fully automated direct immersion solid-phase microextraction method using a matrix-compatible fiber. Food Chem 340:128127

    Article  CAS  PubMed  Google Scholar 

  6. Wu L, Yuan Z, Li Z, Huang Z, Hu B (2020) In vivo solid-phase microextraction swab sampling of environmental pollutants and drugs in human body for nano-electrospray ionization mass spectrometry analysis. Anal Chim Acta 1124:71–77

    Article  CAS  PubMed  Google Scholar 

  7. Huq M, Tascon M, Nazdrajic E, Roszkowska A, Pawliszyn J (2019) Measurement of free drug concentration from biological tissue by solid-phase microextraction: in silico and experimental study. Anal Chem 91:7719–7728

    Article  CAS  PubMed  Google Scholar 

  8. Hashemi B, Zohrabi P, Shamsipur M (2018) Recent developments and applications of different sorbents for SPE and SPME from biological samples. Talanta 187:337–347

    Article  CAS  PubMed  Google Scholar 

  9. Chang Q, Peng Y, Yun L, Zhu Q, Hu S, Shuai Q (2017) Rapid identification of unknown organic iodine in small-volume complex biological samples based on nanospray mass spectrometry coupled with in-tube solid phase microextraction. Anal Chem 89:4147–4152

    Article  CAS  PubMed  Google Scholar 

  10. Roszkowska A, Yu M, Bessonneau V, Ings J, McMaster M, Smith R, Bragg L, Servos M, Pawliszyn J (2019) In vivo solid-phase microextraction sampling combined with metabolomics and toxicological studies for the non-lethal monitoring of the exposome in fish tissue. Environ Pollut 249:109–115

    Article  CAS  PubMed  Google Scholar 

  11. Reyes-Garces N, Diwan M, Boyaci E, Gomez-Rios GA, Bojko B, Nobrega JN, Bambico FR, Hamani C, Pawliszyn J (2019) In vivo brain sampling using a microextraction probe reveals metabolic changes in rodents after deep brain stimulation. Anal Chem 91:9875–9884

    Article  CAS  PubMed  Google Scholar 

  12. Lord H, Pawliszyn J (2000) Evolution of solid-phase microextraction technology. J Chromatogr A 885:153–193

    Article  CAS  PubMed  Google Scholar 

  13. Xu S, Liu Q, Wang C, Xiao L, Feng S, Li N, Chen C (2020) Three-dimensional pompon-like Au/ZnO porous microspheres as solid phase microextraction coating for determination of volatile fatty acids from foot odor. Talanta 209:120519

    Article  CAS  PubMed  Google Scholar 

  14. Zhou H, Liu P, Du J, Wang F, Wang X, Du X (2020) Selective and efficient solid-phase microextraction of polycyclic aromatic hydrocarbons in water by robust two-dimensional zinc oxide nanosheets grown on a superelastic nickel-titanium alloy fiber prior to determination by HPLC-UV. Anal Methods 12:5086–5096

    Article  CAS  PubMed  Google Scholar 

  15. Liu S, Xie L, Zheng J, Jiang R, Zhu F, Luan T, Ouyang G (2015) Mesoporous TiO2 nanoparticles for highly sensitive solid-phase microextraction of organochlorine pesticides. Anal Chim Acta 878:109–117

    Article  CAS  PubMed  Google Scholar 

  16. Wang Z, Wang F, Zhang R, Wang Z, Du X (2019) A new strategy for electrochemical fabrication of manganese dioxide coatings based on silica nanoparticles deposited on titanium fibers for selective and highly efficient solid-phase microextraction. New J Chem 43:5055–5064

    Article  CAS  Google Scholar 

  17. Su H, Tian Q, Hurd Price CA, Xu L, Qian K, Liu J (2020) Nanoporous core@shell particles: design, preparation, applications in bioadsorption and biocatalysis. Nano Today 31:100834

    Article  CAS  Google Scholar 

  18. Lu S, Liu Q, Han R, Shi J, Guo M, Song C, Ji N, Lu X, Ma D (2021) Core-shell structured Y zeolite/hydrophobic organic polymer with improved toluene adsorption capacity under dry and wet conditions. Chem Eng J 409:128194

    Article  CAS  Google Scholar 

  19. Niu M, Pham-Huy C, He H (2016) Core-shell nanoparticles coated with molecularly imprinted polymers: a review. Microchim Acta 183:2677–2695

    Article  CAS  Google Scholar 

  20. Shaikh H, Memon N, Bhanger MI, Nizamani SM, Denizli A (2014) Core-shell molecularly imprinted polymer-based solid-phase microextraction fiber for ultra trace analysis of endosulfan I and II in real aqueous matrix through gas chromatography-micro electron capture detector. J Chromatogr A 1337:179–187

    Article  CAS  PubMed  Google Scholar 

  21. Zhou J, She X, Xing H, Wang X, Zhao R (2016) Enrichment and determination of polybrominated diphenyl ethers in environmental water samples by magnetic solid-phase extraction with core-shell magnetic carbon microspheres before gas chromatography with mass spectrometry. J Sep Sci 39:1955–1962

    Article  CAS  PubMed  Google Scholar 

  22. Fang Q, Chen B, Lin Y, Guan Y (2014) Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups. Environ Sci Technol 48:279–288

    Article  CAS  PubMed  Google Scholar 

  23. Huang M, Li Z, Wen J, Ding X, Zhou M, Cai C, Shen F (2021) Molecular insights into the effects of pyrolysis temperature on composition and copper binding properties of biochar-derived dissolved organic matter. J Hazard Mater 410:124537

    Article  CAS  PubMed  Google Scholar 

  24. Wang H, Jin B, Wang H, Ma N, Liu W, Weng D, Wu X, Liu S (2018) Study of Ag promoted Fe2O3@CeO2 as superior soot oxidation catalysts: the role of Fe2O3 crystal plane and tandem oxygen delivery. Appl Catal B-Environ 237:251–262

    Article  CAS  Google Scholar 

  25. Konieczka P, Wolska L, Namiesnik J (2010) Quality problems in determination of organic compounds in environmental samples, such as PAHs and PCBs. TrAC Trends Anal Chem 29:706–717

    Article  CAS  Google Scholar 

  26. Fu Y, Gao X, Zha D, Zhu J, Ouyang X, Wang X (2018) Yolk–shell-structured MnO2 microspheres with oxygen vacancies for high-performance supercapacitors. J Mater Chem A 6:1601–1611

    Article  CAS  Google Scholar 

  27. Xu L, Huang S, Liu Y, Wei S, Chen G, Gong Z, Ouyang G (2020) Hollow carbon nanobubbles-coated solid-phase microextraction fibers for the sensitive detection of organic pollutants. Anal Chim Acta 1097:85–93

    Article  CAS  PubMed  Google Scholar 

  28. Yin L, Hu Q, Mondal S, Xu J, Ouyang G (2019) Peanut shell-derived biochar materials for effective solid-phase microextraction of polycyclic aromatic hydrocarbons in environmental waters. Talanta 202:90–95

    Article  CAS  PubMed  Google Scholar 

  29. Huang Z, Liu G, Xu J, Ye Y, Zhou N, Ouyang G (2020) Flower-like architecture magnesia-carbon composite material for highly sensitive solid-phase microextraction. Talanta 217:121088

    Article  CAS  PubMed  Google Scholar 

  30. Hu M, Li Z, Guo C, Wang M, He L, Zhang Z (2019) Hollow core-shell nanostructured MnO2/Fe2O3 embedded within amorphous carbon nanocomposite as sensitive bioplatform for detecting protein tyrosine kinase-7. Appl Surf Sci 489:13–24

    Article  CAS  Google Scholar 

  31. Saravanan R, Joicy S, Gupta VK, Narayanan V, Stephen A (2013) Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts. Mater Sci Eng C-Mater Biol Appl 33:4725–4731

    Article  CAS  PubMed  Google Scholar 

  32. Wang H, Yang W, Wang X, Huang L, Zhang Y, Yao S (2020) A CeO2@MnO2 core–shell hollow heterojunction as glucose oxidase-like photoenzyme for photoelectrochemical sensing of glucose. Sensor Actuat B-Chem 304:127389

    Article  CAS  Google Scholar 

  33. Jayababu N, Poloju M, Shruthi J, Reddy MVR (2019) Ultrasensitive resistivity-based ethanol sensor based on the use of CeO2-Fe2O3 core-shell microclusters. Microchim Acta 186:712

    Article  CAS  Google Scholar 

  34. Zhou J, Qin L, Xiao W, Zeng C, Li N, Lv T, Zhu H (2017) Oriented growth of layered-MnO2 nanosheets over α-MnO2 nanotubes for enhanced room-temperature HCHO oxidation. Appl Catal B-Environ 207:233–243

    Article  CAS  Google Scholar 

  35. Zhang S, Wang H, Si H, Jia X, Wang Z, Li Q, Kong J, Zhang J (2020) Novel core–shell (ε-MnO2/CeO2)@CeO2 composite catalyst with a synergistic effect for efficient formaldehyde oxidation. ACS Appl Mater Inter 12:40285–40295

    Article  CAS  Google Scholar 

  36. Hao S, Zhang B, Feng J, Liu Y, Ball S, Pan J, Srinivasan M, Huang Y (2017) Nanoscale ion intermixing induced activation of Fe2O3/MnO2 composites for application in lithium ion batteries. J Mater Chem A 5:8510–8518

    Article  CAS  Google Scholar 

  37. Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254:2441–2449

    Article  CAS  Google Scholar 

  38. Qu Z, Miao L, Wang H, Fu Q (2015) Highly dispersed Fe2O3 on carbon nanotubes for low-temperature selective catalytic reduction of NO with NH3. Chem Commun 51:956–958

    Article  CAS  Google Scholar 

  39. Tang X, Jia R, Zhai T, Xia H (2015) Hierarchical Fe3O4@Fe2O3 Core–shell nanorod arrays as high-performance anodes for asymmetric supercapacitors. ACS Appl Mater Interf 7:27518–27525

    Article  CAS  Google Scholar 

  40. Zhang Y, Zheng Y, Zou H, Zhang X (2015) One-step synthesis of ternary MnO2–Fe2O3–CeO2–Ce2O3/CNT catalysts for use in low-temperature NO reduction with NH3. Catal Commun 71:46–50

    Article  CAS  Google Scholar 

  41. Olivera S, Chaitra K, Venkatesh K, Muralidhara HB, Asiri AM, Ahamed MI (2018) Cerium dioxide and composites for the removal of toxic metal ions. Environ Chem Lett 16:1233–1246

    Article  CAS  Google Scholar 

  42. Li C, Sun Y, Djerdj I, Voepel P, Sack CC, Weller T, Ellinghaus R, Sann J, Guo Y, Smarsly BM, Over H (2017) Shape-controlled CeO2 nanoparticles: stability and activity in the catalyzed HCl oxidation reaction. ACS Catal 7:6453–6463

    Article  CAS  Google Scholar 

  43. Xu S, Li H, Wu H, Xiao L, Dong P, Feng S, Fan J (2020) A facile cooling-assisted solid-phase microextraction device for solvent-free sampling of polycyclic aromatic hydrocarbons from soil based on matrix solid-phase dispersion technique. Anal Chim Acta 1115:7–15

    Article  CAS  PubMed  Google Scholar 

  44. Jiang H, Hu X, Li Y, Qi J, Sun X, Wang L, Li J (2019) Large-pore ordered mesoporous carbon as solid-phase microextraction coating for analysis of polycyclic aromatic hydrocarbons from aqueous media. Talanta 195:647–654

    Article  CAS  PubMed  Google Scholar 

  45. Feng Z, Huang C, Guo Y, Liu W, Zhang L (2020) Graphitic carbon nitride derivative with large mesopores as sorbent for solid-phase microextraction of polycyclic aromatic hydrocarbons. Talanta 209:120541

    Article  CAS  PubMed  Google Scholar 

  46. Abolghasemi MM, Yousefi V, Hazizadeh B (2012) An inorganic–organic hybrid material based on ZnO nanoparticles anchored to a composite made from polythiophene and hexagonally ordered silica for use in solid-phase fiber microextraction of PAHs. Microchim Acta 181:639–645

    Article  Google Scholar 

  47. Heidari H, Razmi H, Jouyban A (2012) Preparation and characterization of ceramic/carbon coated Fe3O4 magnetic nanoparticle nanocomposite as a solid-phase microextraction adsorbent. J Chromatogr A 1245:1–7

    Article  CAS  PubMed  Google Scholar 

  48. Alizadeh R, Najafi NM (2013) Quantification of PAHs and chlorinated compounds by novel solid-phase microextraction based on the arrays of tin oxide nanorods. Environ Monit Assess 185:7353–7363

    Article  CAS  PubMed  Google Scholar 

  49. Rocio-Bautista P, Gutierrez-Serpa A, Cruz AJ, Ameloot R, Ayala JH (2020) Solid-phase microextraction coatings based on the metal-organic framework ZIF-8: ensuring stable and reusable fibers. Talanta 215:120910

    Article  CAS  PubMed  Google Scholar 

  50. Liu H, Wang D, Li J, Liu S, Liu X, Jiang S (2010) A novel TiO2 nanotube array/Ti wire incorporated solid-phase microextraction fiber with high strength, efficiency and selectivity. J Chromatogr A 1217:1898–1903

    Article  CAS  PubMed  Google Scholar 

  51. Zhu W, Zhang J, Zhang X, Han L, Lu M (1626) Preparation of al-doped mesoporous crystalline material-41 as fiber coating material for headspace solid-phase microextraction of polycyclic aromatic hydrocarbons from human urine. J Chromatogr A 2020:461354

  52. Zhang J, Li W, Zhu W, Qin P, Lu M, Zhang X, Miao Y, Cai Z (2019) Mesoporous graphitic carbon nitride@NiCo2O4 nanocomposite as a solid phase microextraction coating for sensitive determination of environmental pollutants in human serum samples. Chem Commun 55:10019–10022

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by funding from the National Natural Science Foundation of China (21976052, 21977025, 21705017), the Youth Science Foundation of Henan Normal University (20200183), Henan special support for high-level talents central plains science and technology innovation leading talents (204200510006), and Natural Science Foundation of Guizhou Province of China ([2019]1423).

Author information

Authors and Affiliations

Authors

Contributions

Shengrui Xu: conceptualization, methodology, and writing—review and editing. Panlong Dong: investigation and writing—original draft preparation. Ming Qin and Hailin Liu: formal analysis and investigation. Anying Long: resources. Changpo Chen: writing—review and editing. Suling Feng: supervision. Hongjing Wu: funding acquisition and supervision.

Corresponding authors

Correspondence to Shengrui Xu or Hongjing Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 239 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Dong, P., Qin, M. et al. Core-shell structured Fe2O3/CeO2@MnO2 microspheres with abundant surface oxygen for sensitive solid-phase microextraction of polycyclic aromatic hydrocarbons from water. Microchim Acta 188, 337 (2021). https://doi.org/10.1007/s00604-021-05004-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05004-8

Keywords

Navigation