Skip to main content
Log in

Fast construction of core-shell structured magnetic covalent organic framework as sorbent for solid-phase extraction of zearalenone and its derivatives prior to their determination by UHPLC-MS/MS

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Magnetic covalent organic framework nanocomposite denoted as Fe3O4@TAPB-Tp with core-shell structure was fabricated via a simple template-mediated precipitation polymerization method at mild conditions. The polyimine network shell was created through the polymerization of 1,3,5-tris(4-aminophenyl)-benzene (TAPB) and 1,3,5-triformyl-phloroglucinol (Tp) in tetrahydrofuran (THF) by the Schiff-base reaction. Featuring with large specific surface area (163.19 m2 g−1), good solution dispersibility, and high stability, the obtained Fe3O4@TAPB-Tp exhibited high adsorption capacities and fast adsorption for zearalenone and its derivatives (ZEAs). The adsorption isotherms showed multilayer adsorption dominated at low concentration and monolayer adsorption at high concentration between the interface of ZEAs and Fe3O4@TAPB-Tp. With the Fe3O4@TAPB-Tp as sorbent, a magnetic solid-phase extraction-ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was established for simultaneous adsorption and detection of five ZEAs in complex samples. The proposed method displayed favorable linearity, low limits of detection (0.003 ~ 0.018 μg kg−1), and good repeatability (2.37~10.4%). The developed method has been applied for real sample analysis, with recoveries of 81.27~90.26%. These results showed that Fe3O4@TAPB-Tp has a good application potential for the adsorption of ZEAs in food samples.

Graphical abstract

Magnetic covalent organic framework nanocomposite (Fe3O4@TAPB-Tp) were quickly fabricated at mild conditions and used as effective adsorbent for magnetic solid-phase extraction of zearalenone and its derivatives (ZEAs) from food samples prior to ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yang Y, Li G, Wu D, Liu J, Li X, Luo P, Hu N, Wang H, Wu Y (2020) Recent advances on toxicity and determination methods of mycotoxins in foodstuffs. Trends Food Sci Technol 96:233–252. https://doi.org/10.1016/j.tifs.2019.12.021

    Article  CAS  Google Scholar 

  2. S-j L, Sheng W, Wen W, Gu Y, Wang J-p, Wang S (2018) Three kinds of lateral flow immunochromatographic assays based on the use of nanoparticle labels for fluorometric determination of zearalenone. Microchim Acta 185(4):238. https://doi.org/10.1007/s00604-018-2778-6

    Article  CAS  Google Scholar 

  3. Llorent-Martínez EJ, Fernández-Poyatos MP, Ruiz-Medina A (2019) Automated fluorimetric sensor for the determination of zearalenone mycotoxin in maize and cereals feedstuff. Talanta 191:89–93. https://doi.org/10.1016/j.talanta.2018.08.049

    Article  CAS  PubMed  Google Scholar 

  4. Huang Z, He J, Li H, Zhang M, Wang H, Zhang Y, Li Y, You L, Zhang S (2020) Synthesis and application of magnetic-surfaced pseudo molecularly imprinted polymers for zearalenone pretreatment in cereal samples. Food Chem 308:125696. https://doi.org/10.1016/j.foodchem.2019.125696

    Article  CAS  PubMed  Google Scholar 

  5. Sun X, Tang Q, Du X, Xi C, Tang B, Wang G, Zhao H (2017) Simultaneous determination of ractopamine, chloramphenicol, and zeranols in animal-originated foods by LC-MS/MS analysis with immunoaffinity clean-up column. Food Anal Methods 10(10):3239–3246. https://doi.org/10.1007/s12161-017-0858-6

    Article  Google Scholar 

  6. Jiang K, Huang Q, Fan K, Wu L, Nie D, Guo W, Wu Y, Han Z (2018) Reduced graphene oxide and gold nanoparticle composite-based solid-phase extraction coupled with ultra-high-performance liquid chromatography-tandem mass spectrometry for the determination of 9 mycotoxins in milk. Food Chem 264:218–225. https://doi.org/10.1016/j.foodchem.2018.05.041

    Article  CAS  PubMed  Google Scholar 

  7. Rogowska A, Pomastowski P, Sagandykova G, Buszewski B (2019) Zearalenone and its metabolites: effect on human health, metabolism and neutralisation methods. Toxicon 162:46–56. https://doi.org/10.1016/j.toxicon.2019.03.004

    Article  CAS  PubMed  Google Scholar 

  8. Luo L, Ma S, Li L, Liu X, Zhang J, Li X, Liu D, You T (2019) Monitoring zearalenone in corn flour utilizing novel self-enhanced electrochemiluminescence aptasensor based on NGQDs-NH2-Ru@SiO2 luminophore. Food Chem 292:98–105. https://doi.org/10.1016/j.foodchem.2019.04.050

    Article  CAS  PubMed  Google Scholar 

  9. Hang Y, Liu D, Peng J, Cui Y, Shi Y, He H (2020) Magnetic hyperbranched molecularly imprinted polymers for selective enrichment and determination of zearalenone in wheat proceeded by HPLC-DAD analysis. Talanta 209:120555. https://doi.org/10.1016/j.talanta.2019.120555

    Article  CAS  Google Scholar 

  10. Li Y, Zhang H, Chen Y, Huang L, Lin Z, Cai Z (2019) Core–shell structured magnetic covalent organic framework nanocomposites for triclosan and triclocarban adsorption. ACS Appl Mater Interfaces 11(25):22492–22500. https://doi.org/10.1021/acsami.9b06953

    Article  CAS  PubMed  Google Scholar 

  11. Han Z, Jiang K, Fan Z, Diana Di Mavungu J, Dong M, Guo W, Fan K, Campbell K, Zhao Z, Wu Y (2017) Multi-walled carbon nanotubes-based magnetic solid-phase extraction for the determination of zearalenone and its derivatives in maize by ultra-high performance liquid chromatography-tandem mass spectrometry. Food Control 79:177–184. https://doi.org/10.1016/j.foodcont.2017.03.044

    Article  CAS  Google Scholar 

  12. Pallarés N, Font G, Mañes J, Ferrer E (2017) Multimycotoxin LC–MS/MS analysis in tea beverages after dispersive liquid–liquid microextraction (DLLME). J Agric Food Chem 65(47):10282–10289. https://doi.org/10.1021/acs.jafc.7b03507

    Article  CAS  PubMed  Google Scholar 

  13. Zhao Z, Yang X, Zhao X, Bai B, Yao C, Liu N, Wang J, Zhou C (2017) Vortex-assisted dispersive liquid-liquid microextraction for the analysis of major Aspergillus and Penicillium mycotoxins in rice wine by liquid chromatography-tandem mass spectrometry. Food Control 73:862–868. https://doi.org/10.1016/j.foodcont.2016.09.035

    Article  CAS  Google Scholar 

  14. Rico-Yuste A, Walravens J, Urraca JL, Abou-Hany RAG, Descalzo AB, Orellana G, Rychlik M, De Saeger S, Moreno-Bondi MC (2018) Analysis of alternariol and alternariol monomethyl ether in foodstuffs by molecularly imprinted solid-phase extraction and ultra-high-performance liquid chromatography tandem mass spectrometry. Food Chem 243:357–364. https://doi.org/10.1016/j.foodchem.2017.09.125

    Article  CAS  PubMed  Google Scholar 

  15. W-k L, Y-p S (2019) Recent advances and applications of carbon nanotubes based composites in magnetic solid-phase extraction. TrAC Trends Anal Chem 118:652–665. https://doi.org/10.1016/j.trac.2019.06.039

    Article  CAS  Google Scholar 

  16. Socas-Rodríguez B, Hernández-Borges J, Herrera-Herrera AV, Rodríguez-Delgado MÁ (2018) Multiresidue analysis of oestrogenic compounds in cow, goat, sheep and human milk using core-shell polydopamine coated magnetic nanoparticles as extraction sorbent in micro-dispersive solid-phase extraction followed by ultra-high-performance liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 410(7):2031–2042. https://doi.org/10.1007/s00216-018-0882-4

    Article  CAS  PubMed  Google Scholar 

  17. Sun M, Feng J, Han S, Ji X, Li C, Feng J, Sun H, Fan J (2021) Poly(ionic liquid)-hybridized silica aerogel for solid-phase microextraction of polycyclic aromatic hydrocarbons prior to gas chromatography-flame ionization detection. Microchim Acta 188(3):96. https://doi.org/10.1007/s00604-021-04730-3

    Article  CAS  Google Scholar 

  18. Wang M, Gao M, Zhang K, Wang L, Wang W, Fu Q, Xia Z, Gao D (2019) Magnetic covalent organic frameworks with core-shell structure as sorbents for solid phase extraction of fluoroquinolones, and their quantitation by HPLC. Microchim Acta 186(12):827. https://doi.org/10.1007/s00604-019-3757-2

    Article  CAS  Google Scholar 

  19. Guo W, Wang W, Yang Y, Zhang S, Yang B, Ma W, He Y, Lin Z, Cai Z (2021) Facile fabrication of magnetic covalent organic frameworks and their application in selective enrichment of polychlorinated naphthalenes from fine particulate matter. Microchim Acta 188(3):91. https://doi.org/10.1007/s00604-021-04750-z

    Article  CAS  Google Scholar 

  20. Zhang H, Song H, Tian X, Wang Y, Hao Y, Wang W, Gao R, Yang W, Ke Y, Tang Y (2021) Magnetic imprinted nanoparticles with synergistic tailoring of covalent and non-covalent interactions for purification and detection of procyanidin B2. Microchim Acta 188(1):17. https://doi.org/10.1007/s00604-020-04693-x

    Article  CAS  Google Scholar 

  21. Deng Z-H, Wang X, Wang X-L, Gao C-L, Dong L, Wang M-L, Zhao R-S (2019) A core-shell structured magnetic covalent organic framework (type Fe3O4@COF) as a sorbent for solid-phase extraction of endocrine-disrupting phenols prior to their quantitation by HPLC. Microchim Acta 186(2):108. https://doi.org/10.1007/s00604-018-3198-3

    Article  CAS  Google Scholar 

  22. Qiu X-L, Li Q-L, Zhou Y, Jin X-Y, Qi A-D, Yang Y-W (2015) Sugar and pH dual-responsive snap-top nanocarriers based on mesoporous silica-coated Fe3O4 magnetic nanoparticles for cargo delivery. Chem Commun 51(20):4237–4240. https://doi.org/10.1039/C4CC10413G

    Article  CAS  Google Scholar 

  23. Li N, Du J, Wu D, Liu J, Li N, Sun Z, Li G, Wu Y (2018) Recent advances in facile synthesis and applications of covalent organic framework materials as superior sorbents in sample pretreatment. TrAC Trends Anal Chem 108:154–166. https://doi.org/10.1016/j.trac.2018.08.025

    Article  CAS  Google Scholar 

  24. Lu Y-Y, Wang X-L, Wang L-L, Zhang W, Wei J, Lin J-M, Zhao R-S (2021) Room-temperature synthesis of amino-functionalized magnetic covalent organic frameworks for efficient extraction of perfluoroalkyl acids in environmental water samples. J Hazard Mater 407:124782. https://doi.org/10.1016/j.jhazmat.2020.124782

    Article  CAS  PubMed  Google Scholar 

  25. Li G, Ye J, Fang Q, Liu F (2019) Amide-based covalent organic frameworks materials for efficient and recyclable removal of heavy metal lead (II). Chem Eng J 370:822–830. https://doi.org/10.1016/j.cej.2019.03.260

    Article  CAS  Google Scholar 

  26. Jiang Y, Liu C, Huang A (2019) EDTA-functionalized covalent organic framework for the removal of heavy-metal ions. ACS Appl Mater Interfaces 11(35):32186–32191. https://doi.org/10.1021/acsami.9b11850

    Article  CAS  PubMed  Google Scholar 

  27. Lin G, Gao C, Zheng Q, Lei Z, Geng H, Lin Z, Yang H, Cai Z (2017) Room-temperature synthesis of core–shell structured magnetic covalent organic frameworks for efficient enrichment of peptides and simultaneous exclusion of proteins. Chem Commun 53(26):3649–3652. https://doi.org/10.1039/C7CC00482F

    Article  CAS  Google Scholar 

  28. Sun Q, Gao C, Ma W, He Y, Wu J, Luo K, Ouyang D, Lin Z, Cai Z (2020) High-throughput screening of bisphenols using magnetic covalent organic frameworks as a SELDI-TOF-MS probe. Microchim Acta 187(7):370. https://doi.org/10.1007/s00604-020-04340-5

    Article  CAS  Google Scholar 

  29. Lin X, Wang X, Wang J, Yuan Y, Di S, Wang Z, Xu H, Zhao H, Qi P, Ding W (2020) Facile synthesis of a core-shell structured magnetic covalent organic framework for enrichment of organophosphorus pesticides in fruits. Anal Chim Acta 1101:65–73. https://doi.org/10.1016/j.aca.2019.12.012

    Article  CAS  PubMed  Google Scholar 

  30. Li Y, Yang C-X, Yan X-P (2017) Controllable preparation of core–shell magnetic covalent-organic framework nanospheres for efficient adsorption and removal of bisphenols in aqueous solution. Chem Commun 53(16):2511–2514. https://doi.org/10.1039/C6CC10188G

    Article  CAS  Google Scholar 

  31. Tan J, Namuangruk S, Kong W, Kungwan N, Guo J, Wang C (2016) Manipulation of amorphous-to-crystalline transformation: towards the construction of covalent organic framework hybrid microspheres with NIR photothermal conversion ability. Angew Chem Int Edit 55(45):13979–13984. https://doi.org/10.1002/anie.201606155

    Article  CAS  Google Scholar 

  32. Li N, Wu D, Hu N, Fan G, Li X, Sun J, Chen X, Suo Y, Li G, Wu Y (2018) Effective enrichment and detection of trace polycyclic aromatic hydrocarbons in food samples based on magnetic covalent organic framework hybrid microspheres. J Agric Food Chem 66(13):3572–3580. https://doi.org/10.1021/acs.jafc.8b00869

    Article  CAS  PubMed  Google Scholar 

  33. Ma W-F, Zhang Y, Li L-L, You L-J, Zhang P, Zhang Y-T, Li J-M, Yu M, Guo J, Lu H-J, Wang C-C (2012) Tailor-made magnetic Fe3O4@mTiO2 microspheres with a tunable mesoporous anatase shell for highly selective and effective enrichment of phosphopeptides. ACS Nano 6(4):3179–3188. https://doi.org/10.1021/nn3009646

    Article  CAS  PubMed  Google Scholar 

  34. González-Sálamo J, Socas-Rodríguez B, Hernández-Borges J, Rodríguez-Delgado MÁ (2017) Core-shell poly(dopamine) magnetic nanoparticles for the extraction of estrogenic mycotoxins from milk and yogurt prior to LC–MS analysis. Food Chem 215:362–368. https://doi.org/10.1016/j.foodchem.2016.07.154

    Article  CAS  PubMed  Google Scholar 

  35. Li C-Y, Liu J-M, Wang Z-H, Lv S-W, Zhao N, Wang S (2020) Integration of Fe3O4@UiO-66-NH2@MON core-shell structured adsorbents for specific preconcentration and sensitive determination of aflatoxins against complex sample matrix. J Hazard Mater 384:121348. https://doi.org/10.1016/j.jhazmat.2019.121348

    Article  CAS  PubMed  Google Scholar 

  36. Zhang W, Lan C, Zhang H, Zhang Y, Zhang W, Zhao W, Johnson C, Hu K, Xie F, Zhang S (2019) Facile preparation of dual-shell novel covalent–organic framework functionalized magnetic nanospheres used for the simultaneous determination of fourteen trace heterocyclic aromatic amines in nonsmokers and smokers of cigarettes with different tar yields based on UPLC-MS/MS. J Agric Food Chem 67(13):3733–3743. https://doi.org/10.1021/acs.jafc.8b06372

    Article  CAS  PubMed  Google Scholar 

  37. Xu H, Tao S, Jiang D (2016) Proton conduction in crystalline and porous covalent organic frameworks. Nat Mater 15(7):722–726. https://doi.org/10.1038/nmat4611

    Article  CAS  PubMed  Google Scholar 

  38. Al-Ghouti MA, Da'ana DA (2020) Guidelines for the use and interpretation of adsorption isotherm models: a review. J Hazard Mater 393:122383. https://doi.org/10.1016/j.jhazmat.2020.122383

    Article  CAS  PubMed  Google Scholar 

  39. Zhao Y, Yuan Y-C, Bai X-L, Liu Y-M, Wu G-F, Yang F-S, Liao X (2020) Multi-mycotoxins analysis in liquid milk by UHPLC-Q-exactive HRMS after magnetic solid-phase extraction based on PEGylated multi-walled carbon nanotubes. Food Chem 305:125429

    Article  CAS  PubMed  Google Scholar 

  40. Xu J, Chi J, Lin C, Lin X, Xie Z (1620) Towards high-efficient online specific discrimination of zearalenone by using gold nanoparticles@aptamer-based affinity monolithic column. J Chromatogr A 2020:461026. https://doi.org/10.1016/j.chroma.2020.461026

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Key Research and Development Program of China (2018YFC1603600) and the National “Ten thousand Plan” Scientific and Technological Innovation Leading Talent Project (Feng ZHANG).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Zhang or Tong Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human or animal subjects.

Informed consent

Informed consent is not applicable for this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1514 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YF., Mu, GD., Wang, XJ. et al. Fast construction of core-shell structured magnetic covalent organic framework as sorbent for solid-phase extraction of zearalenone and its derivatives prior to their determination by UHPLC-MS/MS. Microchim Acta 188, 246 (2021). https://doi.org/10.1007/s00604-021-04893-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04893-z

Keywords

Navigation