Skip to main content
Log in

Simultaneous adsorption and determination of bisphenol compounds in water medium with a Zr(IV)-based metal-organic framework

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A chemically stable Zr(IV)-based metal-organic framework (BUT-17) has been explored for simultaneous adsorption and determination of bisphenol compounds (BPs) in aqueous medium. The prepared BUT-17 possesses a large surface area (2936 m2 g−1) and excellent fluorescent performance. An adsorption capacity of 111 mg g−1 for bisphenol A (BPA) with a rapid adsorption rate (1.76 g mg−1 min−1) is achieved by BUT-17. The excellent adsorption performance could be attributed to the hydrogen bond interaction between BPs and BUT-17. Furthermore, the fluorescent intensity of BUT-17 was quenched up to 92% due to the formation of complexes between BPs and BUT-17. Thus, a BUT-17-based fluorescent sensing method for the rapid determination of BPs has been established with the limit of detection of 10.0 ng mL−1 for BPA and a linear range from 2.0 to 23.0 μg mL−1. These results indicate that as an outstanding multifunctional platform, BUT-17 is promising for the simultaneous removal and determination of BPs in water medium.

Graphical abstract

Simultaneous removal and detection of BPs with BUT-17.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Street ME, Bernasconi S (2020) Endocrine-disrupting chemicals in human fetal growth. Int J Mol Sci 21(4):1430. https://doi.org/10.3390/ijms21041430

    Article  CAS  PubMed Central  Google Scholar 

  2. Marqueño A, Pérez-Albaladejo E, Flores C, Moyano E, Porte C (2019) Toxic effects of bisphenol a diglycidyl ether and derivatives in human placental cells. Environ Pollut 244:513–521. https://doi.org/10.1016/j.envpol.2018.10.045

    Article  CAS  PubMed  Google Scholar 

  3. Xue J, Liu W, Kannan K (2017) Bisphenols, benzophenones, and bisphenol a diglycidyl ethers in textiles and infant clothing. Environ Sci Technol 51:5279–5286. https://doi.org/10.1021/acs.est.7b00701

    Article  CAS  PubMed  Google Scholar 

  4. Liao C, Kannan K (2019) Species-specific accumulation and temporal trends of bisphenols and benzophenones in mollusks from the Chinese Bohai Sea during 2006–2015. Sci Total Environ 653:168–175. https://doi.org/10.1016/j.scitotenv.2018.10.271

    Article  CAS  PubMed  Google Scholar 

  5. Catron T, Keely S, Brinkman N, Zurlinden T, Wood C, Wright J, Phelps D, Wheaton E, Kvasnicka A, Gaballah S, Lamendella R, Tal T (2019) Host developmental toxicity of BPA and BPA alternatives is inversely related to microbiota disruption in zebrafish. Toxicol Sci 167:468–483. https://doi.org/10.1093/toxsci/kfy261

    Article  CAS  PubMed  Google Scholar 

  6. Gallartayala H, Moyano E, Galceran MT (2011) Analysis of bisphenols in soft drinks by on-line solid phase extraction fast liquid chromatography-tandem mass spectrometry. Anal Chim Acta 683:227–233. https://doi.org/10.1016/j.aca.2010.10.034

    Article  CAS  Google Scholar 

  7. Chang W-H, Liu S-C, Chen H-L, Lee C-C (2019) Dietary intake of 4-nonylphenol and bisphenol a in Taiwanese population: integrated risk assessment based on probabilistic and sensitive approach. Environ Pollut 244:143–152. https://doi.org/10.1016/j.envpol.2018.10.040

    Article  CAS  PubMed  Google Scholar 

  8. Reyesgallardo E, Lucena R, Cardenas S, Valcarcel M (2016) Dispersive micro-solid phase extraction of bisphenol a from milk using magnetic nylon 6 composite and its final determination by HPLC-UV. Microchem J 124:751–756. https://doi.org/10.1016/j.microc.2015.10.025

    Article  CAS  Google Scholar 

  9. Diao C, Yang X, Sun A, Liu R (2015) A combined technique for the pretreatment of ultra trace bisphenol a in environmental water based on magnetic matrix solid phase extraction assisted dispersive liquid-liquid microextraction. Anal Methods 7:10170–10176. https://doi.org/10.1039/C5AY02711J

    Article  CAS  Google Scholar 

  10. Zhou XL, Kramer JP, Calafat AM, Ye XY (2014) Automated on-line column-switching high performance liquid chromatography isotope dilution tandem mass spectrometry method for the quantification of bisphenol a, bisphenol F, bisphenol S, and 11 other phenols in urine. J Chromatogr B 944:152–156. https://doi.org/10.1016/j.jchromb.2013.11.009

    Article  CAS  Google Scholar 

  11. Liu Y, Wang D, Du F, Zheng W, Liu Z, Xu Z, Hu X, Liu H (2019) Dummy-template molecularly imprinted micro-solid-phase extraction coupled with high-performance liquid chromatography for bisphenol a determination in environmental water samples. Microchem J 145:337–344. https://doi.org/10.1016/j.microc.2018.10.054

    Article  CAS  Google Scholar 

  12. Becerra V, Odermatt J (2012) Detection and quantification of traces of bisphenol a and bisphenol S in paper samples using analytical pyrolysis-GC/MS. Analysts 137:2250–2259. https://doi.org/10.1039/C2AN15961A

    Article  CAS  Google Scholar 

  13. Sasaki N, Okuda K, Kato T, Kakishima H, Okuma H, Abe K, Tachino H, Tuchida K, Kubono K (2005) Salivary bisphenol-a levels detected by ELISA after restoration with composite resin. J Mater Sci Mater Med 16:297–300. https://doi.org/10.1007/s10856-005-0627-8

    Article  CAS  PubMed  Google Scholar 

  14. Diepens M, Gijsman P (2007) Photodegradation of bisphenol a polycarbonate. Polym Degrad Stab 92:397–406. https://doi.org/10.1016/j.polymdegradstab.2006.12.003

    Article  CAS  Google Scholar 

  15. Xu J, Wang L, Zhu Y (2012) Decontamination of bisphenol a from aqueous solution by graphene adsorption. Langmuir 28:8418–8425. https://doi.org/10.1021/la301476p

    Article  CAS  PubMed  Google Scholar 

  16. Canevari T, Rossi M, Alexiou A (2019) Development of an electrochemical sensor of endocrine disruptor bisphenol a by reduced graphene oxide for incorporation of spherical carbon nanoparticles. J Electroanal Chem 832:24–30. https://doi.org/10.1016/j.jelechem.2018.10.044

    Article  CAS  Google Scholar 

  17. Chen J, Huang X, Lee D (2008) Bisphenol a removal by a membrane bioreactor. Process Biochem 43:451–456. https://doi.org/10.1016/j.procbio.2008.01.001

    Article  CAS  Google Scholar 

  18. Peng Y, Chen Y, Chang Y, Shi Y (2015) Biodegradation of bisphenol a with diverse microorganisms from river sediment. J Hazard Mater 286:285–290. https://doi.org/10.1016/j.jhazmat.2014.12.051

    Article  CAS  PubMed  Google Scholar 

  19. Wang P, Xie L, Joseph E, Li J, Su X, Zhou H (2019) Metal-organic frameworks for food safety. Chem Rev 119:10638–10690. https://doi.org/10.1021/acs.chemrev.9b00257

    Article  CAS  PubMed  Google Scholar 

  20. Bai Y, Dou Y, Xie L, Rutledge W, Li J, Zhou H (2016) Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Chem Soc Rev 45:2327–2367. https://doi.org/10.1039/C5CS00837A

    Article  CAS  PubMed  Google Scholar 

  21. Qiao Y, Liu Q, Lu S, Chen G, Gao S, Lu W, Sun X (2020) High-performance non-enzymatic glucose detection: using a conductive Ni-MOF as an electrocatalyst. J Mater Chem B 8:5411–5415. https://doi.org/10.1039/D0TB00131G

    Article  CAS  PubMed  Google Scholar 

  22. Xiong W, Cheng X, Wang T, Luo Y, Feng J, Lu S, Asiri A, Li W, Jiang Z, Sun X (2020) Co3(hexahydroxytriphenylene)2: a conductive metal-organic framework for ambient electrocatalytic N2 reduction to NH3. Nano Res 13:1008–1012. https://doi.org/10.1007/s12274-020-2733-9

    Article  CAS  Google Scholar 

  23. Park J, Jhung S (2020) A remarkable adsorbent for removal of bisphenol S from water: aminated metal-organic framework, MIL-101-NH2. Chem Eng J 396:125224. https://doi.org/10.1016/j.cej.2020.125224

    Article  CAS  Google Scholar 

  24. Bůžek D, Ondrušová S, Hynek J, Kovář P, Lang K, Rohlíček J, Demel J (2020) Robust aluminum and iron phosphinate metal-organic frameworks for efficient removal of bisphenol a. Inorg Chem 59:5538–5545. https://doi.org/10.1021/acs.inorgchem.0c00201

    Article  CAS  PubMed  Google Scholar 

  25. Meng AN, Chaihu LX, Chen HH, Gu ZY (2017) Ultrahigh adsorption and singlet-oxygen mediated degradation for efficient synergetic removal of bisphenol a by a stable zirconium-porphyrin metal-organic framework. Sci Rep 7:6297. https://doi.org/10.1038/s41598-017-06194-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang X, Lu X, Wu L, Chen J (2015) 3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol a. Biosens Bioelectron 65:295–301. https://doi.org/10.1016/j.bios.2014.10.010

    Article  CAS  PubMed  Google Scholar 

  27. Yang H, Wang B, Liu J, Cheng J, Yu L, Yu J, Wang P, Li J, Su X (2020) Sensitive and selective detection of bisphenol compounds in a fluorescent metal-organic framework. Sensors Actuators B Chem 314:128048. https://doi.org/10.1016/j.snb.2020.128048

    Article  CAS  Google Scholar 

  28. Wang B, Wang P, Xie L, Lin R, Lv J, Li J, Chen B (2019) A stable zirconium-based metal-organic framework for specific recognition of representative polychlorinated dibenzo-p-dioxin molecules. Nat Commun 10:1–8. https://doi.org/10.1038/s41467-019-11912-4

    Article  CAS  Google Scholar 

  29. Spek AL (2003) Single-crystal structure validation with the program PLATON. J Appl Crystallogr 36:7–13. https://doi.org/10.1107/S0021889802022112

    Article  CAS  Google Scholar 

  30. Nagarkar S, Joarder B, Chaudhari A, Ghosh S, Mukherjee S (2013) Highly selective detection of nitro explosives by a luminescent metal-organic framework. Angew Chem Int Ed 52:2881–2885. https://doi.org/10.1002/anie.201208885

    Article  CAS  Google Scholar 

  31. Alsbaiee A, Smith B, Xiao L, Ling Y, Helbling D, Dichtel W (2016) Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature 529:190–194. https://doi.org/10.1038/nature16185

    Article  CAS  PubMed  Google Scholar 

  32. Ha N, Lefedova O, Ha N (2016) Theoretical study on the adsorption of carbon dioxide on individual and alkali-metal doped MOF-5s. Russ J Phys Chem A 90:220–225. https://doi.org/10.1134/S0036024415120201

    Article  CAS  Google Scholar 

  33. Jin Z, Wang X, Sun Y, Ai Y, Wang X (2015) Adsorption of 4-n-nonylphenol and bisphenol-a on magnetic reduced graphene oxides: a combined experimental and theoretical studies. Environ Sci Technol 49:9168–9175. https://doi.org/10.1021/acs.est.5b02022

    Article  CAS  PubMed  Google Scholar 

  34. Abid HR, Ang HM, Wang SB (2012) Effects of ammonium hydroxide on the structure and gas adsorption of nanosized Zr-MOFs (UiO-66). Nanoscale 4:3089–3094. https://doi.org/10.1039/C2NR30244F

    Article  CAS  PubMed  Google Scholar 

  35. Dong X, Wang R, Wang J, Zang S, Mak T (2015) Highly selective Fe3+ sensing and proton conduction in a water-stable sulfonate-carboxylate Tb-organic-framework. J Mater Chem A 3:641–647. https://doi.org/10.1039/C4TA04421E

    Article  CAS  Google Scholar 

  36. Xiang ZH, Fang CQ, Leng SH, Cao DP (2014) An amino group functionalized metal-organic framework as a luminescent probe for highly selective sensing of Fe3+ ions. J Mater Chem A 2:7662–7665. https://doi.org/10.1039/C4TA00313F

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the National key research and development program of China (Grant No. 2017YFC1601604), the National Natural Science Foundation of China (Grant No. 21777189, 21576006, 21601008), the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 51621003), the Beijing Natural Science Foundation (Grant No. 2182005), and Fundamental Research Funds for Central Public Research Institutes (Grant No. Y2020PT38).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peilong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 6837 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Cheng, J., Yang, H. et al. Simultaneous adsorption and determination of bisphenol compounds in water medium with a Zr(IV)-based metal-organic framework. Microchim Acta 188, 83 (2021). https://doi.org/10.1007/s00604-021-04742-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04742-z

Keywords

Navigation