Skip to main content
Log in

Co3(hexahydroxytriphenylene)2: A conductive metal—organic framework for ambient electrocatalytic N2 reduction to NH3

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As a carbon-neutral alternative to the Haber-Bosch process, electrochemical N2 reduction enables environment-friendly NH3 synthesis at ambient conditions but needs active electrocatalysts for the N2 reduction reaction. Here, we report that conductive metal—organic framework Co3(hexahydroxytriphenylene)2 (Co3HHTP2) nanoparticles act as an efficient catalyst for ambient electrochemical N2-to-NH3 fixation. When tested in 0.5 M LiClO4, such Co3HHTP2 achieves a large NH3 yield of 22.14 µg·h−1mg−1cat. with a faradaic efficiency of 3.34% at −0.40 V versus the reversible hydrogen electrode. This catalyst also shows high electrochemical stability and excellent selectivity toward NH3 synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schlögl, R. Catalytic synthesis of ammonia—A “never-ending story”. Angew. Chem., Int. Ed.2003, 42, 2004–2008.

    Google Scholar 

  2. Lan, R.; Irvine, J. T. S.; Tao, S. W. Ammonia and related chemicals as potential indirect hydrogen storage materials. Int. J. Hydrogen Energy2012, 37, 1482–1494.

    CAS  Google Scholar 

  3. Aika, K. Ammonia: Catalysis and Manufacture; Springer: Berlin, 1995; pp199–308.

    Google Scholar 

  4. Zhu, X. J.; Mou, S. Y.; Peng, Q. L.; Liu, Q.; Luo, Y. L.; Chen, G.; Gao S. Y.; Sun, X. P. Aqueous electrocatalytic N2 reduction for ambient NH3 synthesis: Recent advances in catalyst development and performance improvement. J. Mater. Chem. A2020, 8, 1545–1556.

    CAS  Google Scholar 

  5. Gao, S. Y.; Zhu, Y. Z.; Chen, Y.; Tian, M.; Yang, Y. J.; Jiang, T.; Wang, Z. L. Self-power electroreduction of N2 into NH3 by 3D printed triboelectric nanogenerators. Mater. Today2019, 28, 17–24.

    CAS  Google Scholar 

  6. Cui, X. Y.; Tang, C.; Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater.2018, 8, 1800369.

    Google Scholar 

  7. Kyriakou, V.; Garagounis, I.; Vasileiou, E.; Vourros, A.; Stoukides, M. Progress in the electrochemical synthesis of ammonia. Catal. Today2017, 286, 2–13.

    CAS  Google Scholar 

  8. Guo, W. H.; Zhang, K. X.; Liang, Z. B.; Zou, R. Q.; Xu, Q. Electrochemical nitrogen fixation and utilization: Theories, advanced catalyst materials and system design. Chem. Soc. Rev.2019, 48, 5658–5716.

    CAS  Google Scholar 

  9. Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo (electro) catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci.2018, 11, 45–56.

    CAS  Google Scholar 

  10. Bao, D.; Zhang, Q.; Meng, F. L.; Zhong, H. X.; Shi, M. M.; Zhang, Y.; Yan, J. M.; Jiang, Q.; Zhang, X. B. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater.2017, 29, 1604799.

    Google Scholar 

  11. Kordali, V.; Kyriacou, G.; Lambrou, C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chem. Commun.2000, 17, 1673–1674.

    Google Scholar 

  12. Xie, H. T.; Geng, Q.; Zhu, X. J.; Luo, Y. L.; Chang, L.; Niu, X. B.; Shi, X. F.; Asiri, A. M.; Gao, S. Y.; Wang, Z. M. et al. PdP2 nanoparticlesreduced graphene oxide for electrocatalytic N2 conversion to NH3 under ambient conditions. J. Mater. Chem. A2019, 7, 24760–24764.

    CAS  Google Scholar 

  13. Deng, G. R.; Wang, T.; Alshehri, A. A.; Alzahrani, K. A.; Wang, Y.; Ye, H. J.; Luo, Y. L.; Sun, X. P. Improving the electrocatalytic N2 reduction activity of Pd nanoparticles through surface modification. J. Mater. Chem. A2019, 7, 21674–21677.

    CAS  Google Scholar 

  14. Liu, H. M.; Han, S. H.; Zhao, Y.; Zhu, Y. Y.; Tian, X. L.; Zeng, J. H.; Jiang, J. X.; Xia, B. Y.; Chen, Y. Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction. J. Mater. Chem. A2018, 6, 3211–3217.

    CAS  Google Scholar 

  15. Zhao, R. B.; Liu, C. W.; Zhang, X. X.; Zhu, X. J.; Wei, P. P.; Ji, L.; Guo, Y. B.; Gao, S. Y.; Luo, Y. L.; Wang, Z. M. An ultrasmall Ru2P nanoparticles-reduced graphene oxide hybrid: An efficient electrocatalyst for NH3 synthesis under ambient conditions. J. Mater. Chem. A2020, 8, 77–81.

    CAS  Google Scholar 

  16. Zhang, S. B.; Zhao, C. J.; Liu, Y. Y.; Li, W. Y.; Wang, J. L.; Wang, G. Z.; Zhang, Y. X.; Zhang, H. M.; Zhao, H. J. Cu doping in CeO2 to form multiple oxygen vacancies for dramatically enhanced ambient N2 reduction performance. Chem. Commun.2019, 55, 2952–2955.

    CAS  Google Scholar 

  17. Zhang, R.; Guo, H. R.; Yang, L.; Wang, Y.; Niu, Z. G.; Huang, H.; Chen, H. Y.; Xia, L.; Li, T. S.; Shi, X. F. et al. Electrocatalytic N2 fixation over hollow VO2 microspheres at ambient conditions. ChemElectroChem2019, 6, 1014–1018.

    CAS  Google Scholar 

  18. Zhao, J. X.; Ren, X.; Li, X. H.; Fan, D. W.; Sun, X.; Ma, H. M.; Wei, Q.; Wu, D. High-performance N2-to-NH3 fixation by a metal-free electrocatalyst. Nanoscale2019, 11, 4231–4235.

    CAS  Google Scholar 

  19. Li, C. B.; Mou, S. Y.; Zhu, X. J.; Wang, F. Y.; Wang, Y. T.; Qiao, Y. X.; Shi, X. F.; Luo, Y. L; Zheng, B. Z.; Li, Q. et al. Dendritic Cu: A high-efficiency electrocatalyst for N2 fixation to NH3 under ambient conditions. Chem. Commun.2019, 55, 14474–14477.

    CAS  Google Scholar 

  20. Wu, T. W.; Kong, W. H.; Zhang, Y.; Xing, Z.; Zhao, J. X.; Wang, T.; Shi, X. F.; Luo, Y. L.; Sun, X. P. Greatly enhanced electrocatalytic N2 reduction on TiO2 via V doping. Small Methods2019, 3, 1900356.

    CAS  Google Scholar 

  21. Wu, T. W.; Zhu, X. J.; Xing, Z.; Mou, S. Y.; Li, C. B.; Qiao, Y. X.; Liu, Q.; Luo, Y. L.; Shi, X. F.; Zhang, Y. N. et al. Greatly improving electrochemical N2 reduction over TiO2 nanoparticle by Fe doping. Angew. Chem., Int. Ed.2019, 58, 18449–18453.

    CAS  Google Scholar 

  22. Liu, Y. Y.; Han, M. M.; Xiong, Q. Z.; Zhang, S. B.; Zhao, C. J.; Gong, W. B.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. Ambient ammonia electrosynthesis: Dramatically enhanced ambient ammonia electrosynthesis performance by in-operando created Li-S interactions on MoS2 electrocatalyst. Adv. Energy Mater.2019, 9, 1970042.

    Google Scholar 

  23. Li, Y. F.; Li, T. S.; Zhu, X. J.; Alshehri, A. A.; Alzahrani, K. A.; Lu, S. Y.; Sun, X. P. DyF3: An efficient electrocatalyst for N2 fixation to NH3 under ambient conditions. Chem. Asian J.2020, 15, 487–489.

    CAS  Google Scholar 

  24. Chen, S. M.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D. S.; Centi, G. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbonnanotube-based electrocatalyst. Angew. Chem., Int. Ed.2017, 56, 2699–2703.

    CAS  Google Scholar 

  25. Yu, J. L.; Li, C. B.; Li, B. Y.; Zhu, X. J.; Zhang, R.; Ji, L.; Tang, D. P.; Asiri, A. M.; Sun, X. P.; Li, Q. et al. A perovskite La2Ti2O7 nanosheet as an efficient electrocatalyst for artificial N2 fixation to NH3 in acidic media. Chem. Commun.2019, 55, 6401–6404.

    CAS  Google Scholar 

  26. Zhang, R.; Han, J. R.; Zheng, B. Z.; Shi, X. F.; Asiri, A. M.; Sun, X. P. Metal-organic framework-derived shuttle-like V2O3/C for electrocatalytic N2 reduction at ambient conditions. Inorg. Chem. Front.2019, 6, 391–395.

    CAS  Google Scholar 

  27. Jin, H. Y.; Li, L. Q.; Liu, X.; Tang, C.; Xu, W. J.; Chen, S. M.; Song, L.; Zheng, Y.; Qiao, S. Nitrogen vacancies on 2D layered W2N3: A stable and efficient active site for nitrogen reduction reaction. Adv. Mater.2019, 31, 1902709.

    Google Scholar 

  28. Zhu, X. J.; Zhao, J. X.; Ji, L.; Wu, T. W.; Wang, T.; Gao, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Xiang, Y. M. et al. FeOOH quantum dots decorated graphene sheet: An efficient electrocatalyst for ambient N2 reduction. Nano Res.2020, 13, 209–214.

    CAS  Google Scholar 

  29. Li, L. Q.; Tang, C.; Xia, B. Q.; Jin, H. Y.; Zheng, Y.; Qiao, S. Z. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catal.2019, 9, 2902–2908.

    CAS  Google Scholar 

  30. Zhu, X. J.; Wu, T. W.; Ji, L.; Li, C. B.; Wang, T.; Wen, S. H.; Gao, S. Y.; Shi, X. F.; Luo, Y. L.; Peng, Q. L. et al. Ambient electrohydrogenation of N2 for NH3 synthesis on non-metal boron phosphide nanoparticles: The critical role of P in boosting the catalytic activity. J. Mater. Chem. A2019, 7, 16117–16121.

    CAS  Google Scholar 

  31. Yang, X.; Nash, J.; Anibal, J.; Dunwell, M.; Kattel, S.; Stavitski, E.; Attenkofer, K.; Chen, J. G.; Yan, Y. S.; Xu, B. J. Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles. J. Am. Chem. Soc.2018, 140, 13387–13391.

    CAS  Google Scholar 

  32. Zhao, J. X.; Yang, J. J.; Ji, L.; Wang, H. B.; Chen, H. Y.; Niu, Z. G.; Liu, Q.; Li, T. S.; Cui, G. L.; Sun, X. P. Defect-rich fluorographene nanosheet for artificial N2 fixation under ambient conditions. Chem. Commun.2019, 55, 4266–4269.

    CAS  Google Scholar 

  33. Fang, C. H.; Bi, T.; Xu, X. X.; Yu, N.; Cui, Z. Q.; Jiang, R. B.; Geng, B. Y. Oxygen vacancy-enhanced electrocatalytic performances of TiO2 nanosheets toward N2 reduction reaction. Adv. Mater. Interfaces2019, 6, 1901034.

    CAS  Google Scholar 

  34. Zhang, R.; Ji, L.; Kong, W. H.; Wang, H. B.; Zhao, R. B.; Chen, H. Y.; Li, T. S.; Li, B. H.; Luo, Y. L.; Sun, X. P. Electrocatalytic N2-to-NH3 conversion with high faradaic efficiency enabled using a Bi nanosheet array. Chem. Commun.2019, 55, 5263–5266.

    CAS  Google Scholar 

  35. Cheng, H.; Ding, L. X.; Chen, G. F.; Zhang, L. L.; Xue, J.; Wang, H. H. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv. Mater.2018, 30, 1803694.

    Google Scholar 

  36. Chen, G. F.; Cao, X. R.; Wu, S. Q.; Zeng, X. Y.; Ding, L. X.; Zhu M.; Wang, H. H. Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J. Am. Chem. Soc.2017, 139, 9771–9774.

    CAS  Google Scholar 

  37. Xia, L.; Yang, J. J.; Wang, H. B.; Zhao, R. B.; Chen, H. Y.; Fang, W. H.; Asiri, A. M.; Xie, F. Y.; Cui, G. L.; Sun, X. P. Sulfur-doped graphene for efficient electrocatalytic N2-to-NH3 fixation. Chem. Commun.2019, 55, 3371–3374.

    CAS  Google Scholar 

  38. Chu, K.; Liu, Y. P.; Li, Y. B.; Wang, J.; Zhang, H. Electronically coupled SnO2 quantum dots and graphene for efficient nitrogen reduction reaction. ACS Appl. Mater. Interfaces2019, 11, 31806–31815.

    CAS  Google Scholar 

  39. Chu, K.; Liu, Y. P.; Li, Y. B.; Zhang, H.; Tian, Y. Efficient electrocatalytic N2 reduction on CoO quantum dots. J. Mater. Chem. A2019, 7, 4389–4394.

    CAS  Google Scholar 

  40. Xia, L.; Wu, X. F.; Wang, Y.; Niu, Z. G.; Liu, Q.; Li, T. S.; Shi, X. F.; Asiri, A. M.; Sun, X. P. S-doped carbon nanospheres: An efficient electrocatalyst toward artificial N2 fixation to NH3. Small Methods2019, 3, 1800251.

    Google Scholar 

  41. Wang, F. Y.; Lv, X.; Zhu, X. J.; Du, J.; Lu, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Zheng, B. Z.; Sun, X. P. Bi nanodendrites for efficient electrocatalytic N2 fixation to NH3 under ambient conditions. Chem. Commun.2020, 56, 2107–2110.

    CAS  Google Scholar 

  42. James, S. L. Metal-organic frameworks. Chem. Soc. Rev.2003, 32, 276–288.

    CAS  Google Scholar 

  43. Kannangara, Y. Y.; Rathnayake, U. A.; Song, J. K. Hybrid supercapacitors based on metal organic frameworks using p-phenylenediamine building block. Chem. Eng. J.2019, 361, 1235–1244.

    CAS  Google Scholar 

  44. Diaz, R.; Orcajo, M. G.; Botas, J. A.; Calleja, G.; Palma, J. Co8-MOF-5 as electrode for supercapacitors. Mater. Lett.2012, 68, 126–128.

    CAS  Google Scholar 

  45. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science2013, 341, 1230444.

    Google Scholar 

  46. Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev.2012, 112, 673–674.

    CAS  Google Scholar 

  47. Zhao, X. R.; Yin, F. X.; Liu, N.; Li, G. R.; Fan, T. X.; Chen, B. H. Highly efficient metal-organic-framework catalysts for electrochemical synthesis of ammonia from N2 (air) and water at low temperature and ambient pressure. J. Mater. Sci.2017, 52, 10175–10185.

    CAS  Google Scholar 

  48. Hong, M.; Zhou, C.; Xu, S. S.; Ye, X. Z.; Yang, Z.; Zhang, L. Y.; Zhou, Z. H.; Hu, N. T.; Zhang, Y. F. Bi-metal organic framework nanosheets assembled on nickel wire films for volumetric-energy-dense supercapacitors. J. Power Source2019, 423, 80–89.

    CAS  Google Scholar 

  49. Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C. J.; Shao-Horn Y.; Dincă, M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater.2017, 16, 220–224.

    CAS  Google Scholar 

  50. Campbell, M. G.; Sheberla, D.; Liu, S. F.; Swager, T. M.; Dincă, M. Cu3(hexaiminotriphenylene)2: An electrically conductive 2D metal-organic framework for chemiresistive sensing. Angew. Chem., Int. Ed.2015, 54, 4349–4352.

    CAS  Google Scholar 

  51. Wu, H.; Zhang, W. L.; Kandambeth, S.; Shekhah, O.; Eddaoudi, M.; Alshareef, H. N. Conductive metal-organic frameworks selectively grown on laser-scribed graphene for electrochemical microsupercapacitors. Adv. Energy Mater.2019, 9, 1900482.

    Google Scholar 

  52. Zhu, D.; Zhang, L. H.; Ruther, R. E.; Hamers, R. J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater.2013, 12, 836–841.

    CAS  Google Scholar 

  53. Watt, G. W.; Chrisp, J. D. Spectrophotometric method for determination of hydrazine. Anal. Chem.1952, 24, 2006–2008.

    CAS  Google Scholar 

  54. Li, Y. L.; Li, Q.; Zhao, S. H.; Chen, C.; Zhou, J. J.; Tao, K.; Han, L. Conductive 2D metal-organic frameworks decorated on layered double hydroxides nanoflower surface for high-performance supercapacitor. ChemistrySelect2018, 3, 13596–13602.

    CAS  Google Scholar 

  55. Hmadeh, M.; Lu, Z.; Liu, Z.; Gándara, F.; Furukawa, H.; Wan, S.; Augustyn, V.; Chang, R.; Liao, L.; Zhou, F. et al. New porous crystals of extended metal-catecholates. Chem. Mater.2012, 24, 3511–3513.

    CAS  Google Scholar 

  56. Clough, A. J.; Yoo, J. W.; Mecklenburg, M. H.; Marinescu, S. C. Two-dimensional metal-organic surfaces for efficient hydrogen evolution from water. J. Am. Chem. Soc.2015, 137, 118–121.

    CAS  Google Scholar 

  57. Chuang, T. J.; Brundle, C. R.; Rice, D. W. Interpretation of the X-ray photoemission spectra of cobalt oxides and cobalt oxide surfaces. Surf. Sci.1976, 59, 413–429.

    CAS  Google Scholar 

  58. Mendecki, L.; Mirica, K. A. Conductive metal-organic frameworks as ion-to-electron transducers in potentiometric sensors. ACS Appl. Mater. Interfaces2018, 10, 19248–19257.

    CAS  Google Scholar 

  59. Koo, W. T.; Kim, S. J.; Jang, J. S.; Kim, D.; Kim, I. D. Catalytic metal nanoparticles embedded in conductive metal-organic frameworks for chemiresistors: Highly active and conductive porous materials. Adv. Sci.2019, 6, 1900250.

    CAS  Google Scholar 

  60. Qiu, W. B.; Xie, X. Y.; Qiu, J. D.; Fang, W. H.; Liang, R. P.; Ren, X.; Ji, X. Q.; Cui, G. W.; Asiri, A. M.; Cui, G. L. et al. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat. Commun.2018, 9, 3485.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Li, Zhenju Jiang or Xuping Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, W., Cheng, X., Wang, T. et al. Co3(hexahydroxytriphenylene)2: A conductive metal—organic framework for ambient electrocatalytic N2 reduction to NH3. Nano Res. 13, 1008–1012 (2020). https://doi.org/10.1007/s12274-020-2733-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2733-9

Keywords

Navigation