Ganjali MR et al (2017) Highly sensitive voltammetric sensor for determination of ascorbic acid using graphite screen printed electrode modified with ZnO/Al 2 O 3 nanocomposite. Int J Electrochem Sci 12:3231
CAS
Article
Google Scholar
Lee H, Song C, Hong YS, Kim MS, Cho HR, Kang T, Shin K, Choi SH, Hyeon T, Kim DH (2017) Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci Adv 3:e1601314
PubMed
PubMed Central
Article
CAS
Google Scholar
Tang Y-M et al (2016) Relationships between micronutrient losses in sweat and blood pressure among heat-exposed steelworkers. Ind Health 54:215–223
PubMed
PubMed Central
Article
Google Scholar
Nováková L, Solich P, Solichová D (2008) HPLC methods for simultaneous determination of ascorbic and dehydroascorbic acids. TrAC Trends Anal Chem 27:942–958
Article
CAS
Google Scholar
Chang YL, Rossetti M, Vlamakis H, Casero D, Sunga G, Harre N, Miller S, Humphries R, Stappenbeck T, Simpson KW, Sartor RB, Wu G, Lewis J, Bushman F, McGovern DPB, Salzman N, Borneman J, Xavier R, Huttenhower C, Braun J (2019) A screen of Crohn’s disease-associated microbial metabolites identifies ascorbate as a novel metabolic inhibitor of activated human T cells. Mucosal Immunol 12:457–467
CAS
PubMed
Article
Google Scholar
Tortajada-Genaro LA (2012) Determination of l-ascorbic acid in tomato by capillary electrophoresis. J Chem Educ 89:1194–1197
CAS
Article
Google Scholar
Kamiŝalić A, Fister I, Turkanović M, Karakatiĉ S (2018) Sensors and functionalities of non-invasive wrist-wearable devices: a review. Sensors (Switzerland) 18:1714
Article
Google Scholar
Ibarlucea B, Munoz-Berbel X, Ortiz P, Büttgenbach S, Fernández-Sánchez C, Llobera A (2016) Self-validating lab-on-a-chip for monitoring enzyme-catalyzed biological reactions. Sensors Actuators B Chem 237:16–23
CAS
Article
Google Scholar
Baraban L, Ibarlucea B, Baek E, Cuniberti G (2019) Hybrid silicon nanowire devices and their functional diversity. Adv Sci 6(15):1-31. https://doi.org/10.1002/advs.201900522
Karnaushenko D, Ibarlucea B, Lee S, Lin G, Baraban L, Pregl S, Melzer M, Makarov D, Weber WM, Mikolajick T, Schmidt OG, Cuniberti G (2015) Light weight and flexible high-performance diagnostic platform. Adv Healthc Mater 4:1517–1525
CAS
PubMed
Article
Google Scholar
Zhang P et al (2019) Electrochemically exfoliated high-quality 2H-MoS2 for multiflake thin film flexible biosensors. Small 15:1901265
Article
CAS
Google Scholar
Miyamoto A, Lee S, Cooray NF, Lee S, Mori M, Matsuhisa N, Jin H, Yoda L, Yokota T, Itoh A, Sekino M, Kawasaki H, Ebihara T, Amagai M, Someya T (2017) Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat Nanotechnol 12:907–913
CAS
PubMed
Article
Google Scholar
Gao W, Emaminejad S, Nyein HYY, Challa S, Chen K, Peck A, Fahad HM, Ota H, Shiraki H, Kiriya D, Lien DH, Brooks GA, Davis RW, Javey A (2016) Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529:509–514
CAS
PubMed
PubMed Central
Article
Google Scholar
Koh A et al (2016) A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci Transl Med. 8:366ra165
PubMed
PubMed Central
Article
CAS
Google Scholar
Jia W, Bandodkar AJ, Valdés-Ramírez G, Windmiller JR, Yang Z, Ramírez J, Chan G, Wang J (2013) Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal Chem 85:6553–6560
CAS
PubMed
Article
Google Scholar
Zamora ML, Dominguez JM, Trujillo RM, Goy CB, Sánchez MA, Madrid RE (2018) Potentiometric textile-based pH sensor. Sensors Actuators B Chem 260:601–608
CAS
Article
Google Scholar
Márquez A, Jiménez-Jorquera C, Domínguez C, Muñoz-Berbel X (2017) Electrodepositable alginate membranes for enzymatic sensors: an amperometric glucose biosensor for whole blood analysis. Biosens Bioelectron 97:136–142
PubMed
Article
CAS
Google Scholar
Stromberg LR, Hondred JA, Sanborn D, Mendivelso-Perez D, Ramesh S, Rivero IV, Kogot J, Smith E, Gomes C, Claussen JC (2019) Stamped multilayer graphene laminates for disposable in-field electrodes: application to electrochemical sensing of hydrogen peroxide and glucose. Microchim Acta 186:533
Article
CAS
Google Scholar
Oh SY, Hong SY, Jeong YR, Yun J, Park H, Jin SW, Lee G, Oh JH, Lee H, Lee SS, Ha JS (2018) Skin-attachable, stretchable electrochemical sweat sensor for glucose and pH detection. ACS Appl Mater Interfaces 10:13729–13740
CAS
PubMed
Article
Google Scholar
Csiffáry G, Futo P, Adányi N, Kiss A (2016) Ascorbate oxidase-based amperometric biosensor for L-ascorbic acid determination in beverages. Food Technol Biotechnol 54:31–35
PubMed
PubMed Central
Article
CAS
Google Scholar
Sempionatto JR, Khorshed AA, Ahmed A, de Loyola e Silva AN, Barfidokht A, Yin L, Goud KY, Mohamed MA, Bailey E, May J, Aebischer C, Chatelle C, Wang J (2020) Epidermal enzymatic biosensors for sweat vitamin C: toward personalized nutrition. ACS Sensors 5:1804–1813
CAS
PubMed
Article
Google Scholar
Gnana Kumar G, Amala G, Gowtham SM (2017) Recent advancements, key challenges and solutions in non-enzymatic electrochemical glucose sensors based on graphene platforms. RSC Adv 7:36949–36976
CAS
Article
Google Scholar
Zhang X, Cao Y, Yu S, Yang F, Xi P (2013) An electrochemical biosensor for ascorbic acid based on carbon-supported PdNi nanoparticles. Biosens Bioelectron 44:183–190
PubMed
Article
CAS
Google Scholar
Li X, Wang Y, Liu J, Sun M, Bo X, Wang HL, Zhou M (2017) Amperometric ascorbic acid biosensor based on carbon nanoplatelets derived from ground cherry husks. Electrochem Commun 82:139–144
CAS
Article
Google Scholar
Salahandish R, Ghaffarinejad A, Naghib SM, Niyazi A, Majidzadeh-A K, Janmaleki M, Sanati-Nezhad A (2019) Sandwich-structured nanoparticles-grafted functionalized graphene based 3D nanocomposites for high-performance biosensors to detect ascorbic acid biomolecule. Sci Rep 9:1226
PubMed
PubMed Central
Article
CAS
Google Scholar
Liu S, Jiang X, Yang M (2019) Electrochemical sensing of L-ascorbic acid by using a glassy carbon electrode modified with a molybdophosphate film. Microchim Acta 186:445
Article
CAS
Google Scholar
Zhao Y, Qin J, Xu H, Gao S, Jiang T, Zhang S, Jin J (2019) Gold nanorods decorated with graphene oxide and multi-walled carbon nanotubes for trace level voltammetric determination of ascorbic acid. Microchim Acta 186:17
Article
CAS
Google Scholar
Savk A, Özdil B, Demirkan B, Nas MS, Calimli MH, Alma MH, Inamuddin, Asiri AM, Şen F (2019) Multiwalled carbon nanotube-based nanosensor for ultrasensitive detection of uric acid, dopamine, and ascorbic acid. Mater Sci Eng C 99:248–254
CAS
Article
Google Scholar
Harraz FA, Faisal M, Ismail AA, al-Sayari SA, al-Salami AE, al-Hajry A, al-Assiri MS (2019) TiO2/reduced graphene oxide nanocomposite as efficient ascorbic acid amperometric sensor. J Electroanal Chem 832:225–232
CAS
Article
Google Scholar
Karimi-Maleh H, Arotiba OA (2020) Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid. J Colloid Interface Sci 560:208–212
CAS
PubMed
Article
Google Scholar
Yang H et al (2019) Hierarchical bi-continuous Pt decorated nanoporous Au-Sn alloy on carbon fiber paper for ascorbic acid, dopamine and uric acid simultaneous sensing. Biosens Bioelectron 124–125:191–198
PubMed
Article
CAS
Google Scholar
Wang M, Cui M, Liu W, Liu X (2019) Highly dispersed conductive polypyrrole hydrogels as sensitive sensor for simultaneous determination of ascorbic acid, dopamine and uric acid. J Electroanal Chem 832:174–181
CAS
Article
Google Scholar
Krishnan S, Tong L, Liu S, Xing R (2020) A mesoporous silver-doped TiO2-SnO2 nanocomposite on g-C3N4 nanosheets and decorated with a hierarchical core–shell metal-organic framework for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Microchim Acta 187:82
CAS
Article
Google Scholar
Huang H, Yue Y, Chen Z, Chen Y, Wu S, Liao J, Liu S, Wen HR (2019) Electrochemical sensor based on a nanocomposite prepared from TmPO 4 and graphene oxide for simultaneous voltammetric detection of ascorbic acid, dopamine and uric acid. Microchim Acta 186:189
Article
CAS
Google Scholar
Asif M, Aziz A, Wang H, Wang Z, Wang W, Ajmal M, Xiao F, Chen X, Liu H (2019) Superlattice stacking by hybridizing layered double hydroxide nanosheets with layers of reduced graphene oxide for electrochemical simultaneous determination of dopamine, uric acid and ascorbic acid. Microchim Acta 186:61
Article
CAS
Google Scholar
Zhao Y, Zhou J, Jia Z, Huo D, Liu Q, Zhong D, Hu Y, Yang M, Bian M, Hou C (2019) In-situ growth of gold nanoparticles on a 3D-network consisting of a MoS2/rGO nanocomposite for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Microchim Acta 186:92
Article
CAS
Google Scholar
Liang W, Rong Y, Fan L, Zhang C, Dong W, Li J, Niu J, Yang C, Shuang S, Dong C, Wong WY (2019) Simultaneous electrochemical sensing of serotonin, dopamine and ascorbic acid by using a nanocomposite prepared from reduced graphene oxide, Fe3O4 and hydroxypropyl-β-cyclodextrin. Microchim Acta 186:751
CAS
Article
Google Scholar
George JM, Antony A, Mathew B (2018) Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchim Acta 185:358
Article
CAS
Google Scholar
Cheng X, Zhang X, Yin H, Wang A, Xu Y (2006) Modifier effects on chemical reduction synthesis of nanostructured copper. Appl Surf Sci 253:2727–2732
CAS
Article
Google Scholar
You Q, Liu T, Pang J, Jiang D, Chu Z, Jin W (2019) In situ fabrication of CuO nanowire film for high-sensitive ascorbic acid recognition. Sensors Actuators B Chem 296(126617):126617
CAS
Article
Google Scholar
Ma Y, Zhao M, Cai B, Wang W, Ye Z, Huang J (2014) 3D graphene foams decorated by CuO nanoflowers for ultrasensitive ascorbic acid detection. Biosens Bioelectron 59:384–388
CAS
PubMed
Article
Google Scholar
Ibarlucea B, Roig AP, Belyaev D, Baraban L, Cuniberti G (2019) Single-step modified electrodes for vitamin C monitoring in sweat. ChemRxiv. https://doi.org/10.26434/CHEMRXIV.11357726.V1
Márquez A, Aymerich J, Dei M, Rodríguez-Rodríguez R, Vázquez-Carrera M, Pizarro-Delgado J, Giménez-Gómez P, Merlos Á, Terés L, Serra-Graells F, Jiménez-Jorquera C, Domínguez C, Muñoz-Berbel X (2019) Reconfigurable multiplexed point of care system for monitoring type 1 diabetes patients. Biosens Bioelectron 136:38–46
PubMed
Article
CAS
Google Scholar
Mottet L, le Cornec D, Noël JM, Kanoufi F, Delord B, Poulin P, Bibette J, Bremond N (2018) A conductive hydrogel based on alginate and carbon nanotubes for probing microbial electroactivity. Soft Matter 14:1434–1441
CAS
PubMed
Article
Google Scholar
Cheng Y, Luo X, Betz J, Payne GF, Bentley WE, Rubloff GW (2011) Mechanism of anodic electrodeposition of calcium alginate. Soft Matter 7:5677–5684
CAS
Article
Google Scholar
Kilic T, Brunner V, Audoly L, Carrara S (2017) Smart e-Patch for drugs monitoring in schizophrenia. 2016 IEEE Int Conf Electron Circ Syst ICECS 2016:57–60. https://doi.org/10.1109/ICECS.2016.7841131
Article
Google Scholar
Muri H, Hoang L, Hjelme D (2018) Mapping nanoparticles in hydrogels: a comparison of preparation methods for electron microscopy. Appl Sci 8:2446
Article
CAS
Google Scholar
Curto VF et al (2012) Real-time sweat pH monitoring based on a wearable chemical barcode micro-fluidic platform incorporating ionic liquids. Sensors Actuators B Chem 171–172:1327–1334
Article
CAS
Google Scholar
Coyle, S. et al. (2009) Textile sensors to measure sweat pH and sweat-rate during exercise. in Proceedings of the 3d International ICST Conference on Pervasive Computing Technologies for Healthcare. https://doi.org/10.4108/ICST.PERVASIVEHEALTH2009.5957
Wilde CP, Hu A, Rondeau CM, Wood M (1993) Cyclic voltammetry and charge accumulation at conducting organic salt enzyme electrodes. J Electroanal Chem 353:19–31
CAS
Article
Google Scholar
Schwartz G, Tee BCK, Mei J, Appleton AL, Kim DH, Wang H, Bao Z (2013) Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun 4:1859
PubMed
Article
CAS
Google Scholar
Koczula KM, Gallotta A (2016) Lateral flow assays. Essays Biochem 60:111–120
PubMed
PubMed Central
Article
Google Scholar
Romeo A, Moya A, Leung TS, Gabriel G, Villa R, Sánchez S (2018) Inkjet printed flexible non-enzymatic glucose sensor for tear fluid analysis. Appl Mater Today 10:133–141
Article
Google Scholar
Pakapongpan S, Mensing JP, Phokharatkul D, Lomas T, Tuantranont A (2014) Highly selective electrochemical sensor for ascorbic acid based on a novel hybrid graphene-copper phthalocyanine-polyaniline nanocomposites. Electrochim Acta 133:294–301
CAS
Article
Google Scholar