Skip to main content
Log in

Promoted off-on recognition of H2O2 based on the fluorescence of silicon quantum dots assembled two-dimensional PEG-MnO2 nanosheets hybrid nanoprobe

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An “off−on” assay system for H2O2 determination was developed based on assembling ultra-bright fluorescent silicon quantum dots (SiQDs) and PEG-MnO2 nanosheets. Among them, SiQDs acted as fluorometric reporter, which can effectively eliminate the interference of plant pigments under excitation of 365 nm. PEG-MnO2 nanosheets played dual function of nanoquencher and H2O2 recognizer. Unlike previous reports, the quenching mechanism of SiQDs by PEG-MnO2 nanosheets is attributed to both the associative effect of inner filter effect and the static quenching effect. Thus, the fluorescence intensity of SiQDs at 445 nm decreased with increasing concentration of PEG-MnO2 nanosheets. After addition of H2O2, PEG-MnO2 nanosheets were reduced to Mn2+, consequently resulting in the recovery of the SiQDs fluorescence. Combined with these properties, an off-on fluorescent method was built for determination of H2O2 in plant leaves with high sensitivity and selectivity. The present method has two linear ranges: from 0.05 to 1 μM with a detection limit of 0.09 μM and from 1 to 80 μM with a detection limit of 4.04 μM.

Schematic representation of the mechanism of SiQD/PEG-MnO2 nanoprobe for determination of H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Browniee C, Jones JDG (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446. https://doi.org/10.1038/nature01485

    Article  CAS  PubMed  Google Scholar 

  2. Srikun D, Albers AE, Chang CJ (2011) A dendrimer-based platform for simultaneous dual fluorescence imaging of hydrogen peroxide and pH gradients produced in living cells. Chem Sci 2:1156–1165. https://doi.org/10.1039/C1SC00064K

    Article  CAS  Google Scholar 

  3. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795. https://doi.org/10.1038/nature05292

    Article  CAS  PubMed  Google Scholar 

  4. Foyer CH, Bloom AJ, Queval G, Noctor G (2009) Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annu Rev Plant Biol 60:455–484. https://doi.org/10.1146/annurev.arplant.043008.091948

    Article  CAS  PubMed  Google Scholar 

  5. Kimura S, Waszczak C, Hunter K, Wrzaczek M (2017) Bound by fate: the role of reactive oxygen species in receptor-like kinase signaling. Plant Cell 29:638–654. https://doi.org/10.1105/tpc.16.00947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tian S, Wang X, Li P, Wang H, Ji H, Xie J, Dong H (2016) Plant aquaporin AtPIP1; 4 links apoplastic H2O2 induction to disease immunity pathways. Plant Physiol 171:1635–1650. https://doi.org/10.1104/pp.15.01237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pan X, Li D, Fang Y, Liang Z, Zhang H, Zhang J, Lei B, Song S (2020) Enhanced photogenerated electron transfer in a semiartificial photosynthesis system based on highly dispersed titanium oxide nanoparticles. J Phys Chem Lett 11:1822–1827. https://doi.org/10.1021/acs.jpclett.9b03740

    Article  CAS  PubMed  Google Scholar 

  8. Kumar JS, Ghosh S, Murmu NC, Mandal N, Kuila TJ (2019) Electrochemical detection of H2O2 using copper oxide-reduced graphene oxide heterostructure. J Nanosci Nanotechnol 19:5295–5302. https://doi.org/10.1166/jnn.2019.16834

    Article  CAS  PubMed  Google Scholar 

  9. Cheng H, Liang Q, Chen X, Zhang Y, Qiao F, Guo D (2019) Hydrogen peroxide facilitates arabidopsis seedling establishment by interacting with light signalling pathway in the dark. Plant Cell 42:1302–1317. https://doi.org/10.1111/pce.13482

    Article  CAS  Google Scholar 

  10. Anand A, Kumari A, Thakur M, Koul A (2019) Hydrogen peroxide signaling integrates with phytohormones during the germination of magnetoprimed tomato seeds. Sci Rep 9:8814. https://doi.org/10.1038/s41598-019-45102-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang S, Han S, Yang W, Wei H, Zhang M, Qi L (2010) Changes in H2O2 content and antioxidant enzyme gene expression during the somatic embryogenesis of Larix leptolepis. Plant Cell Tissue Organ Cult 10:21–29. https://doi.org/10.1007/s11240-009-9612-0

    Article  CAS  Google Scholar 

  12. Patterson BD, Macrae EA, Ferguson IB (1984) Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal Biochem 139:487–492. https://doi.org/10.1016/0003-2697(84)90039-3

    Article  CAS  PubMed  Google Scholar 

  13. Liu J, Lv B, Xu L (2000) An improved method for the determination of hydrogen peroxide in leaves. Prog Biochem Biophys 27:548–550. (in Chinese). https://doi.org/10.1016/S0032-9592(00)00208-9

    Article  CAS  Google Scholar 

  14. Ding L, Gong Z, Yan M, Yu J, Song X (2019) Determination of glucose by using fluorescent silicon nanoparticles and an inner filter caused by peroxidase-induced oxidation of o-phenylenediamine by hydrogen peroxide. Microchim Acta (2017) 184:4531–4536. https://doi.org/10.1007/s00604-017-2445-3

    Article  CAS  Google Scholar 

  15. Xu W, Yu L, Xu H, Zhang S, Xu W, Lin Y, Zhu X (2019) Water-dispersed silicon quantum dots for on-off-on fluorometric determination of chromium(VI) and ascorbic acid. Microchim Acta 186:673–681. https://doi.org/10.1007/s00604-019-3751-8

    Article  CAS  Google Scholar 

  16. Liu L, Zhu G, Zeng W, Yi Y, Lv B, Qian J, Zhang D (2019) Silicon quantum dot-coated onto gold nanoparticles as an optical probe for colorimetric and fluorometric determination of cysteine. Microchim Acta 186:98–107. https://doi.org/10.1007/s00604-019-3228-9

    Article  CAS  Google Scholar 

  17. Dong R, Li Y, Li W, Zhang H, Liu Y, Ma L, Wang X, Lei B (2019) Recent developments in luminescent nanoparticles for plant imaging and photosynthesis. J Rare Earths 37:903–915. https://doi.org/10.1016/j.jre.2019.04.001

    Article  CAS  Google Scholar 

  18. Qi W, He H, Fu Y, Zhao M, Qi L, Hu L, Liu C, Li R (2018) Water-dispersed fluorescent silicon nanodots as probes for fluorometric determination of picric acid via energy transfer. Microchim Acta 186:18–25. https://doi.org/10.1007/s00604-018-3135-5

    Article  CAS  Google Scholar 

  19. Li Y, Li W, Zhang H, Liu Y, Ma L, Lei B (2020) Amplified light harvesting for enhancing Italian lettuce photosynthesis using water soluble silicon quantum dots as artificial antennas. Nanoscale 12:155–166. https://doi.org/10.1039/c9nr08187a

    Article  CAS  PubMed  Google Scholar 

  20. Wang LZ, Sakai N, Ebina Y, Takada K, Sasaki T (2005) Inorganic multilayer films of manganese oxide nanosheets and aluminum polyoxocations: fabrication, structure, and electrochemical behavior. Chem Mater 17:1352–1357. https://doi.org/10.1021/cm048146a

    Article  CAS  Google Scholar 

  21. Chen Y, Ye D, Wu M, Chen H, Zhang L, Shi J, Wang L (2014) Break-up of two-dimensional MnO2 nanosheets promotes ultrasensitive pH-triggered theranostics of cancer. Adv Mater 26:7019–7026. https://doi.org/10.1002/adma.201402572

    Article  CAS  PubMed  Google Scholar 

  22. Yan X, Song Y, Zhu C, Song J, Du D, Su X, Lin Y (2016) Graphene quantum dot−MnO2 nanosheet based optical sensing platform: a sensitive fluorescence “turn off−on” nanosensor for glutathione detection and intracellular imaging. ACS Appl Mater Interfaces 8:21990–21996. https://doi.org/10.1021/acsami.6b05465

    Article  CAS  PubMed  Google Scholar 

  23. Lu Y, Liu Y, Wang C, Wu S, Zhou K, Wei W (2019) Enzymatic determination of D-alanine using a cationic poly (fluorenylenephenylene) as the fluorescent probe and MnO2 nanosheets as quenchers. Microchim Acta 186:460–468. https://doi.org/10.1007/s00604-019-3592-5

    Article  CAS  Google Scholar 

  24. Xiao T, Sun J, Zhao J, Wang S, Liu G, Yang X (2018) FRET effect between fluorescent polydopamine nanoparticles and MnO2 nanosheets and its application for sensitive sensing of alkaline phosphatase. ACS Appl Mater Interfaces 10:6560–6569. https://doi.org/10.1021/acsami.7b18816

    Article  CAS  PubMed  Google Scholar 

  25. Gong T, Li Y, Lei B, Zhuang J, Liu Y, Zhang H (2019) Preparation and oxygen sensing properties of water-soluble silicon nanoparticles assembled SBA-15. Mater Res Bull 111:1–6. https://doi.org/10.1016/j.materresbull.2018.10.044

    Article  CAS  Google Scholar 

  26. Zhong Y, Sun X, Wang S, Peng F, Bao F, Su Y, Li Y, Lee S, He Y (2015) Facile, large-quantity synthesis of stable, tunable-color silicon nanoparticles and their application for long-term cellular imaging. ACS Nano 9:5958–5967. https://doi.org/10.1021/acsnano.5b00683

    Article  CAS  PubMed  Google Scholar 

  27. Ogata A, Komaba S, Baddour-Hadjean R, Pereira-Ramos JP, Kumagai N (2008) Doping effects on structure and electrode performance of K-birnessite-type manganese dioxides for rechargeable lithium battery. Electrochim Acta 53:3084–3093. https://doi.org/10.1016/j.electacta.2007.11.038

    Article  CAS  Google Scholar 

  28. Meng HM, Lu LM, Zhao XH, Chen Z, Zhao ZL, Yang C, Zhang XB, Tan WH (2015) Multiple functional nanoprobe for contrast-enhanced bimodal cellular imaging and targeted therapy. Anal Chem 87:4448–4454. https://doi.org/10.1021/acs.analchem.5b00337

    Article  CAS  PubMed  Google Scholar 

  29. Li N, Diao W, Han YY, Pan W, Zhang TT, Tang B (2014) MnO2-modified persistent luminescence nanoparticles for detection and imaging of glutathione in living cells and in vivo. Chem Eur J 20:16488–16491. https://doi.org/10.1002/chem.201404625

    Article  CAS  PubMed  Google Scholar 

  30. Cai QY, Li J, Ge J, Zhang L, Hu YL, Li ZH, Qu LB (2015) A rapid fluorescence “switch-on” assay for glutathione detection by using carbon dots–MnO2 nanocomposites. Biosens Bioelectron 72:31–36. https://doi.org/10.1016/j.bios.2015.04.077

    Article  CAS  PubMed  Google Scholar 

  31. Yan X, Song Y, Zhu C, Li H, Du D, Su X, Lin Y (2018) MnO2 nanosheet-carbon dots sensing platform for sensitive detection of organophosphorus pesticides. Anal Chem 90:2618–2624. https://doi.org/10.1021/acs.analchem.7b04193

    Article  CAS  PubMed  Google Scholar 

  32. Zhai W, Wang C, Yu P, Wang Y, Mao L (2014) Single-layer MnO2 nanosheets suppressed fluorescence of 7-Hydroxycoumarin: mechanistic study and application for sensitive sensing of ascorbic acid in vivo. Anal Chem 86:12206–12213. https://doi.org/10.1021/ac503215z

    Article  CAS  PubMed  Google Scholar 

  33. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York. https://doi.org/10.1007/BF01134381

    Book  Google Scholar 

  34. Kubista M, Sjoback R, Eriksson S, Albinsson B (1944) Experimental correction for the inner-filter effect in fluorescence spectra. Analyst 119:417e419–417e419. https://doi.org/10.1039/AN9941900417

    Article  Google Scholar 

  35. Zhai Y, Zhang H, Zhang L, Dong S (2016) A high performance fluorescence switching system triggered electrochemically by Prussian blue with upconversion nanoparticles. Nanoscale 8:9493e9497–9493e9497. https://doi.org/10.1039/c6nr00948d

    Article  CAS  Google Scholar 

  36. Na W, Liu H, Wang M, Su X (2017) A boronic acid based glucose assay based on the suppression of the inner filter effect of gold nanoparticles on the orange fluorescence of graphene oxide quantum dots. Microchim Acta 184:1463–e1470. https://doi.org/10.1007/s00604-017-2090-x

    Article  CAS  Google Scholar 

  37. Liang Z, Tsoi TH, Chan C, Dai L, Wu Y, Du G, Zhu L, Lee CS, Wong WT, Law GL, Wong KL (2016) A smart “off–on” gate for the in situ detection of hydrogen sulphide with Cu( II )-assisted europium emission. Chem Sci 7:2151–2156. https://doi.org/10.1039/c5sc04091d

    Article  CAS  PubMed  Google Scholar 

  38. Deng R, Xie X, Vendrell M, Chang Y, Liu X (2011) Intracellular glutathione detection using MnO2 –nanosheet modified upconversion nanoparticles. J Am Chem Soc 133:20168–20171. https://doi.org/10.1021/ja2100774

    Article  CAS  PubMed  Google Scholar 

  39. Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Mol Life Sci 57:779–795. https://doi.org/10.1007/s000180050041

    Article  CAS  Google Scholar 

  40. Romero-Puertas MC, Rodriguez-serrano M, Corpas FJ, Gomez M, Delrio LA, Sandalio LM (2004) Cadmium-induced subcellular accumulation of O2·− and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134. https://doi.org/10.1111/j.1365-3040.2004.01217.x

    Article  CAS  Google Scholar 

Download references

Funding

The present work was supported by the National Natural Science Foundations of China (Grant No. 21671070); the Project supported by GDUPS (2018) for Prof. Bingfu LEI; the Project for Construction of High-level University in Guangdong Province of China; the Key Foundation for Basic and Application Research in Higher Education of Guangdong, China (No. 2017KZDXM005); and the Guangzhou Science & Technology Project, China (No. 201707010033).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haoran Zhang or Bingfu Lei.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1011 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, H., Yao, Y. et al. Promoted off-on recognition of H2O2 based on the fluorescence of silicon quantum dots assembled two-dimensional PEG-MnO2 nanosheets hybrid nanoprobe. Microchim Acta 187, 347 (2020). https://doi.org/10.1007/s00604-020-04276-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04276-w

Keywords

Navigation