Skip to main content
Log in

Voltammetric determination of ofloxacin by using a laser-modified carbon glassy electrode

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel electrochemical sensor is described for the determination of ofloxacin (OFL) in environmental water samples. A laser-modified glassy carbon electrode (LGCE) was structured and characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. The increase in electrochemical activity is due to a moderate increase in the surface roughness and to the presence of functional groups on the LGCE. Under optimal conditions (viz. a pH value of 5.5, a laser power of 1.8 W and an action time of 40 s), the sensor is capable of detecting OFL by differential pulse voltammetry at a working potential of +0.91 V (versus Ag/AgCl). Response is linear from 0.25 to 200 μM for OFL concentration range, and the detection limit is 75 nM (at S/N = 3). Removal of oxygen from samples is not required. The sensor was successfully applied to the determination of OFL in spiked groundwater, tap water and wastewater samples, with apparent recoveries from 94.0 to 108.0% and a relative standard deviation of less than 4.8%.”

Schematic representation of a method for determination of ofloxacin (OFL) by differential pulse voltammetry. It is making use of a laser modified glassy carbon electrode (LGCE), which increases the number of active functional groups and the surface area compared to a conventional GCE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu L, Li RZ, Liu Y, Zhang JD (2016) Simultaneous degradation of ofloxacin and recovery of cu(II) by photoelectrocatalysis with highly ordered TiO2 nanotubes. J Hazard Mater 308:264–275. https://doi.org/10.1016/j.jhazmat.2016.01.046

    Article  CAS  PubMed  Google Scholar 

  2. He ZY, Zang S, Liu YJ, He Y, Lei HT (2015) A multi-walled carbon nanotubes-poly(L-lysine) modified enantioselective immunosensor for ofloxacin by using multi-enzyme-labeled gold nanoflower as signal enhancer. Biosens Bioelectron 73:85–92. https://doi.org/10.1016/j.bios.2015.05.054

    Article  CAS  PubMed  Google Scholar 

  3. Luo Y, Xu L, Rysz M, Wang YQ, Zhang H, Alvarez PJJ (2011) Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River basin, China. Environ Sci Technol 45:1827–1833. https://doi.org/10.1021/es104009s

    Article  CAS  PubMed  Google Scholar 

  4. Feng MB, Wang ZY, Dionysiou DD, Sharma VK (2017) Metal-mediated oxidation of fluoroquinolone antibiotics in water: a review on kinetics, transformation products, and toxicity assessment. J Hazard Mater 509:1136–1154. https://doi.org/10.1016/j.jhazmat.2017.08.067

    Article  CAS  Google Scholar 

  5. Jin H, Tian X, Nie YL, Zhou ZX, Yang C, Li Y, Lu LQ (2017) Oxygen vacancy promoted heterogeneous Fenton-like degradation of Ofloxacin at pH 3.2-9.0 by cu substituted magnetic Fe3O4@FeOOH nanocomposite. Environ Sci Technol 51:12699–12706. https://doi.org/10.1021/acs.est.7b04503

    Article  CAS  PubMed  Google Scholar 

  6. Cheng DM, Liu XH, Li JP, Feng Y, Wang J, Li ZJ (2018) Effects of the natural colloidal particles from one freshwater lake on the photochemistry reaction kinetics of ofloxacin and enrofloxacin. Environ Pollut 241:692–700. https://doi.org/10.1016/j.envpol.2018.06.017

    Article  CAS  PubMed  Google Scholar 

  7. Zou SC, Xu WH, Zhang RJ, Tang JH, Chen YJ, Zhang G (2011) Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: impacts of river discharge and aquaculture activities. Environ Pollut 159:2913–2920. https://doi.org/10.1016/j.envpol.2011.04.037

    Article  CAS  PubMed  Google Scholar 

  8. Yudthavorasit S, Chiaochan C, Leepipatpiboon N (2011) Simultaneous determination of multi-class antibiotic residues in water using carrier-mediated hollow-fiber liquid-phase microextraction coupled with ultra-high performance liquid chromatography tandem mass spectrometry. Microchim Acta 172:39–49. https://doi.org/10.1007/s00604-010-0454-6

    Article  CAS  Google Scholar 

  9. Wang RL, Yuan YN, Yang X, Han YH, Yan HY (2015) Polymethacrylate microparticles covalently functionalized with an ionic liquid for solid-phase extraction of fluoroquinolone antibiotics. Microchim Acta 182:2201–2208. https://doi.org/10.1007/s00604-015-1544-2

    Article  CAS  Google Scholar 

  10. Ton XA, Acha V, Haupt K, Tse SBB (2012) Direct fluorimetric sensing of UV-excited analytes in biological and environmental samples using molecularly imprinted polymer nanoparticles and fluorescence polarization. Biosens Bioelectron 36:22–28. https://doi.org/10.1016/j.bios.2012.03.033

    Article  CAS  PubMed  Google Scholar 

  11. Horstkötter C, Blaschke G (2001) Stereoselective determination of ofloxacin and its metabolites in human urine by capillary electrophoresis using laser-induced fluorescence detection. J Chromatogr B 754:169–178. https://doi.org/10.1016/S0378-4347(00)00595-8

    Article  Google Scholar 

  12. Liu W, Guo YM, Li HF, Zhao M, Lai ZS, Li BX (2015) A paper-based chemiluminescence device for the determination of ofloxacin. Spectrochim Acta A Mol Biomol Spectrosc 137:1298–1303. https://doi.org/10.1016/j.saa.2014.09.059

    Article  CAS  PubMed  Google Scholar 

  13. Moreira FTC, Freitas VAP, Sales MGF (2011) Biomimetic norfloxacin sensors made of molecularly-imprinted materials for potentiometric transduction. Microchim Acta 172:15–23. https://doi.org/10.1007/s00604-010-0464-4

    Article  CAS  Google Scholar 

  14. Liu T, Xue Q, Jia JB, Liu F, Zou SZ, Tang RS, Chen T, Li JW, Qian YM (2019) New insights into the effect of pH on the mechanism of ofloxacin electrochemical detection in aqueous solution. Phys Chem Chem Phys 21:16282–16287. https://doi.org/10.1039/C9CP03486B

    Article  CAS  PubMed  Google Scholar 

  15. Huang KJ, Liu X, Xie WZ, Yuan HX (2008) Voltammetric behavior of ofloxacin and its determination using a multi-walled carbon nanotubes-Nafion film coated electrode. Microchim Acta 162:227–233. https://doi.org/10.1007/s00604-008-0943-z

    Article  CAS  Google Scholar 

  16. Han H, Li JZ, Pang XZ (2013) Electrochemical sensor using glassy carbon electrode modified with HPM alpha FP/Ppy/GCE composite film for determination of Ofloxacin. Int J Electrochem Sc 8:9060–9070

    CAS  Google Scholar 

  17. Wu FH, Xu F, Chen L, Jiang BB, Sun WB, Wei XW (2016) Cuprous oxide/nitrogen-doped graphene nanocomposites as electrochemical sensors for ofloxacin determination. Chem Res Chin Univ 32:468–473. https://doi.org/10.1007/s40242-016-5367-4

    Article  CAS  Google Scholar 

  18. Chen TS, Huang KL, Chen JL (2012) An electrochemical approach to simultaneous determination of acetaminophen and ofloxacin. Bull Environ Contam Toxicol 89:1284–1288. https://doi.org/10.1007/s00128-012-0833-2

    Article  CAS  PubMed  Google Scholar 

  19. Pilehvar S, Reinemann C, Bottari F, Vanderleyden E, Van VS, Blust R, Strehlitz B, De WK (2017) A joint action of aptamers and gold nanoparticles chemically trapped on a glassy carbon support for the electrochemical sensing of ofloxacin. Sens Actuators B Chem 240:1024–1035. https://doi.org/10.1016/j.snb.2016.09.075

    Article  CAS  Google Scholar 

  20. Zhou XT, Wang LM, Shen GQ, Zhang DW, Xie JL, Mamut A, Huang WW, Zhou SS (2018) Colorimetric determination of ofloxacin using unmodified aptamers and the aggregation of gold nanoparticles. Microchim Acta 185:355. https://doi.org/10.1007/s00604-018-2895-2

    Article  CAS  Google Scholar 

  21. Ahmad R, Wolfbeis OS, Hahn YB, Alshareef HN, Torsi L, Salama KN (2018) Deposition of nanomaterials: a crucial step in biosensor fabrication. Mater Today Commun 17:289–321. https://doi.org/10.1007/s00604-018-2895-2

    Article  CAS  Google Scholar 

  22. Chen T, Liu YR, Lu JH, Xing J, Li JW, Liu T, Xue Q (2019) Highly efficient detection of ciprofloxacin in water using a nitrogen-doped carbon electrode fabricated through plasma modification. New J Chem 43:15169–15176. https://doi.org/10.1039/C9NJ03511G

    Article  CAS  Google Scholar 

  23. Hu XB, Zheng WH, Zhang RF (2016) Determination of p-chloronitrobenzene by voltammetry with an electrochemically pretreated glassy carbon electrode. J Solid State Electrochem 20:3323–3330. https://doi.org/10.1007/s10008-016-3302-8

    Article  CAS  Google Scholar 

  24. Fenzl C, Nayak P, Hirsch T, Wolfbeis OS, Alshareef HN, Baeumner AJ (2017) Laser-scribed graphene electrodes for Aptamer-based biosensing. Acs Sens 2:616–620. https://doi.org/10.1021/acssensors.7b00066

    Article  CAS  PubMed  Google Scholar 

  25. Kim M, Oh I, Kim J (2016) Influence of surface oxygen functional group on the electrochemical behavior of porous silicon carbide based supercapacitor electrode. Electrochim Acta 196:357–368. https://doi.org/10.1016/j.electacta.2016.03.021

    Article  CAS  Google Scholar 

  26. Xue Q, Kato D, Kamata T, Guo Q, You T, Niwa O (2013) Improved direct electrochemistry for proteins adsorbed on a UV/ozone-treated carbon nanofiber electrode. Anal Sci 29:611–618. https://doi.org/10.2116/analsci.29.611

    Article  CAS  PubMed  Google Scholar 

  27. Sekioka N, Kato D, Ueda A, Kamata T, Kurita R, Umemura S, Hirono S, Niwa O (2008) Controllable electrode activities of nano-carbon films while maintaining surface flatness by electrochemical pretreatment. Carbon 46:1918–1926. https://doi.org/10.1016/j.carbon.2008.08.006

    Article  CAS  Google Scholar 

  28. Dixon D, Babu DJ, Langner J, Bruns M, Pfaffmann L, Bhaskar A, Schneider JJ, Scheiba F, Ehrenberg H (2016) Effect of oxygen plasma treatment on the electrochemical performance of the rayon and polyacrylonitrile based carbon felt for the vanadium redox flow battery application. J Power Sources 332:240–248. https://doi.org/10.1016/j.jpowsour.2016.09.070

    Article  CAS  Google Scholar 

  29. Santos AM, Wong A, Vicentini FC, Fatibello-Filho O (2019) Simultaneous voltammetric sensing of levodopa, piroxicam, ofloxacin and methocarbamol using a carbon paste electrode modified with graphite oxide and β-cyclodextrin. Microchim Acta 186:174. https://doi.org/10.1007/s00604-019-3296-x

    Article  CAS  Google Scholar 

  30. Qin XF, Geng LP, Wang QQ, Wang Y (2019) Photoelectrochemical aptasensing of ofloxacin based on the use of a TiO2 nanotube array co-sensitized with a nanocomposite prepared from polydopamine and Ag2S nanoparticles. Microchim Acta 186. doi: https://doi.org/10.1007/s00604-019-3566-7

  31. Ambrosi A, Antiochia R, Campanella L, Dragone R, Lavagnini I (2005) Electrochemical determination of pharmaceuticals in spiked water samples. J Hazard Mater 122:219–225. https://doi.org/10.1016/j.jhazmat.2005.03.011

    Article  CAS  PubMed  Google Scholar 

  32. Pimenta AM, Souto MRS, Catarino RIL, Leal MFC, Lima JLFC (2011) Determination of Ofloxacin in pharmaceuticals, human urine and serum using a potentiometric sensor. Electroanal 23:1013–1022. https://doi.org/10.1002/elan.201000608

    Article  CAS  Google Scholar 

  33. Li RZ, Lv SS, Shan J, Zhang JD (2015) A novel electrochemical method for ofloxacin determination based on interaction of ofloxacin with cupric ion. Ionics 21:3117–3124. https://doi.org/10.1007/s11581-015-1492-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Guangxi key research project (GuikeAB18050026), the Beijing Natural Science Foundation (No. 8182049), Natural Science Foundation of China (No. 41731282), the Fundamental Research Fund for the Central Universities (No. 2652017166), Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and Natural Science Foundation of Shanghai (17ZR1443400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Xue or Jijun Feng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript has been thoroughly edited by a native English speaker from an editing company. Editing Certificate will be provided upon request.

Electronic supplementary material

ESM 1

(DOCX 519 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Xue, Q., Liu, F. et al. Voltammetric determination of ofloxacin by using a laser-modified carbon glassy electrode. Microchim Acta 187, 86 (2020). https://doi.org/10.1007/s00604-019-4065-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4065-6

Keywords

Navigation