Skip to main content
Log in

A novel electrochemical method for ofloxacin determination based on interaction of ofloxacin with cupric ion

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

An indirect electrochemical sensing strategy for the determination of ofloxacin (OFL) was developed using cupric ion (Cu2+) as an electrochemical probe. The method was based on the complexation of OFL with Cu2+, which was investigated by UV-visible spectrophotometry and differential pulse voltammetry (DPV). When OFL was added into the electrolyte solution containing Cu2+, the electro-reduction peak current of Cu2+ on glassy carbon electrode (GCE) was decreased. Some influencing factors in terms of pH, quiet time, and reaction time were systematically studied. Under optimal conditions, the Cu2+ reduction peak current difference (ΔI p) before and after adding OFL was found to be linear to the concentration of OFL in the range from 1.0 × 10−7 to 1.0 × 10−4 M. The detection limit (3S/N) was 8.2 × 10−8 M. Moreover, the proposed sensor displayed high selectivity and good reproducibility, which was successfully applied to the detection of OFL in pharmaceutical tablet and chicken fodder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ballesteros O, Vílchez JL, Navalón A (2002) Determination of the antibacterial ofloxacin in human urine and serum samples by solid-phase spectrofluorimetry. J Pharm Biomed Anal 30(4):1103–1110. doi:10.1016/S0731-7085(02)00466-1

    Article  CAS  Google Scholar 

  2. Sato K, Matsuura Y, Inoue M, Une T, Osada Y, Ogawa H, Mitsuhashi S (1982) In vitro and in vivo activity of DL-8280, a new oxazine derivative. Antimicrob Agents Chemother 22:548–553. doi:10.1128/AAC.22.4.548

    Article  CAS  Google Scholar 

  3. Park HR, Oh CH, Lee HC, Choi JG, Jung BI, Bark KM (2006) Oligonucleotide-modified screen-printed gold electrodes for enzyme-amplified sensing of nucleic acids. Bull Kor Chem Soc 27:12. doi:10.1016/j.bios.2004.02.021

    Google Scholar 

  4. Andreu V, Blasco C, Picó Y (2007) Analytical strategies to determine quinolone residues in food and the environment. TrAC Trends Anal Chem 26(6):534–556. doi:10.1016/j.trac.2007.01.010

    Article  CAS  Google Scholar 

  5. Martínez-Carballo E, González-Barreiro C, Scharf S, Gans O (2007) Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ Pollut 148(2):570–579. doi:10.1016/j.envpol.2006.11.035

    Article  Google Scholar 

  6. Stolker AAM, Brinkman UAT (2005) Analytical strategies for residue analysis of veterinary drugs and growth-promoting agents in food-producing animals—a review. J Chromatogr A 1067(1–2):15–53. doi:10.1016/j.chroma.2005.02.037

    Article  CAS  Google Scholar 

  7. Cheng G-W, Wu H-L, Huang Y-L (2008) Simultaneous determination of malondialdehyde and ofloxacin in plasma using an isocratic high-performance liquid chromatography/fluorescence detection system. Anal Chim Acta 616(2):230–234. doi:10.1016/j.aca.2008.04.012

    Article  CAS  Google Scholar 

  8. Shervington LA, Abba M, Hussain B, Donnelly J (2005) The simultaneous separation and determination of five quinolone antibiotics using isocratic reversed-phase HPLC: application to stability studies on an ofloxacin tablet formulation. J Pharm Biomed Anal 39(3–4):769–775. doi:10.1016/j.jpba.2005.04.039

    Article  CAS  Google Scholar 

  9. Soledad García M, Isabel Albero M, Sánchez-Pedreño C, Salem Abuherba M (2005) Flow injection spectrophotometric determination of ofloxacin in pharmaceuticals and urine. Eur J Pharm Biopharm 61(1–2):87–93. doi:10.1016/j.ejpb.2005.03.007

    Article  Google Scholar 

  10. Awadallah B, Schmidt PC, Wahl MA (2003) Quantitation of the enantiomers of ofloxacin by capillary electrophoresis in the parts per billion concentration range for in vitro drug absorption studies. J Chromatogr A 988(1):135–143. doi:10.1016/S0021-9673(02)02015-0

    Article  CAS  Google Scholar 

  11. Yin X-B, Kang J, Fang L, Yang X, Wang E (2004) Short-capillary electrophoresis with electrochemiluminescence detection using porous etched joint for fast analysis of lidocaine and ofloxacin. J Chromatogr A 1055(1–2):223–228. doi:10.1016/j.chroma.2004.09.001

    Article  CAS  Google Scholar 

  12. Gong QJ, Qiao JL, Du LM, Dong C, Jin WJ (2000) Recognition and simultaneous determination of ofloxacin enantiomers by synchronization—1st derivative fluorescence spectroscopy. Talanta 53(2):359–365. doi:10.1016/S0039-9140(00)00503-8

    Article  CAS  Google Scholar 

  13. Ulu ST (2009) Rapid and sensitive spectrofluorimetric determination of enrofloxacin, levofloxacin and ofloxacin with 2,3,5,6-tetrachloro-p-benzoquinone. Spectrochim Acta A 72(5):1038–1042. doi:10.1016/j.saa.2008.12.046

    Article  Google Scholar 

  14. Goyal RN, Rana ARS, Chasta H (2012) Electrochemical sensor for the sensitive determination of norfloxacin in human urine and pharmaceuticals. Bioelectrochemistry 83:46–51. doi:10.1016/j.bioelechem.2011.08.006

    Article  Google Scholar 

  15. Yang C, Xu Y, Hu C, Hu S (2008) Voltammetric detection of ofloxacin in human urine at a Congo red functionalized water-soluble carbon nanotube film electrode. Electroanalysis 20(2):144–149. doi:10.1002/elan.200704027

    Article  CAS  Google Scholar 

  16. Rosenberg B, Vancamp L, Trosko JE (1969) Platinum compounds: a new class of potent antitumour agents. Nature 222:385–386. doi:10.1038/222385a0

    Article  CAS  Google Scholar 

  17. Efthimiadou EK, Psomas G, Sanakis Y, Katsaros N, Karaliota A (2007) Metal complexes with the quinolone antibacterial agent N-propyl-norfloxacin: synthesis, structure and bioactivity. J Inorg Biochem 101(3):525–535. doi:10.1016/j.jinorgbio.2006.11.020

    Article  CAS  Google Scholar 

  18. Wallis SC, Gahan LR, Charles BG, Hambley TW (1995) Synthesis and X-ray structural characterization of an iron(III) complex of the fluoroquinolone antimicrobial ciprofloxacin, [Fe(CIP)(NTA)]3·5H2O (NTA=nitrilotriacetato). Polyhedron 14(20–21):2835–2840. doi:10.1016/0277-5387(95)00219-I

    Article  CAS  Google Scholar 

  19. Efthimiadou EK, Sanakis Y, Katsaros N, Karaliota A, Psomas G (2007) Transition metal complexes with the quinolone antibacterial agent pipemidic acid: synthesis, characterization and biological activity. Polyhedron 26(5):1148–1158. doi:10.1016/j.poly.2006.10.017

    Article  CAS  Google Scholar 

  20. Efthimiadou EK, Karaliota A, Psomas G (2010) Metal complexes of the third-generation quinolone antimicrobial drug sparfloxacin: structure and biological evaluation. J Inorg Biochem 104(4):455–466. doi:10.1016/j.jinorgbio.2009.12.019

    Article  CAS  Google Scholar 

  21. Hartshorn EA, Lomaestro BM, Bailie GR (1991) Quinolone cation interactions: a review. Ann Pharmacother 25:1249–1258. doi:10.1177/106002809102501115

    Google Scholar 

  22. Li R, Nix D, Schentag J (1994) Interaction between ciprofloxacin and metal cations: its influence on physicochemical characteristics and antibacterial activity. Pharm Res 11(6):917–920. doi:10.1023/a:1018954530250

    Article  CAS  Google Scholar 

  23. Gürdal H, Usanmaz S, Tulunay FC (1991) The effects of ions on antibacterial activity of ofloxacin and ceftriaxone. Chemotherapy 37(4):251–255. doi:10.1159/000238863

    Article  Google Scholar 

  24. Macías B, MaV V, Rubio I, Castiñeiras A, Jn B (2001) Complexes of Ni(II) and Cu(II) with ofloxacin: crystal structure of a new Cu(II) ofloxacin complex. J Inorg Biochem 84(3–4):163–170. doi:10.1016/S0162-0134(01)00182–9

    Article  Google Scholar 

  25. Sagdinc S, Bayarı S (2004) Spectroscopic studies on the interaction of ofloxacin with metals. J Mol Struct 691(1–3):107–113. doi:10.1016/j.molstruc.2003.11.053

    Article  CAS  Google Scholar 

  26. Zhang N, Zhang X (2007) Voltammetric study of the interaction of the ofloxacin–copper complex with DNA, and its analytical application. Microchim Acta 159(1–2):65–70. doi:10.1007/s00604-006-0715-6

    Article  CAS  Google Scholar 

  27. Eldin F, Suliman O, Sultan SM (1996) Sequential injection technique employed for stoichiometric studies, optimization and quantitative determination of some fluoroquinolone antibiotics complexed with iron(III) in sulfuric acid media. Talanta 43(4):559–568. doi:10.1016/0039–9140(95)01771-2

    Article  CAS  Google Scholar 

  28. Rizk M, Belal F, Ibrahim F, Ahmed S, Sheribah ZA (2001) Derivative spectrophotometric analysis of 4-quinolone antibacterials in formulations and spiked biological fluids by their Cu(II) complexes. J AOAC Int 84(2):368–375

    CAS  Google Scholar 

  29. Tong C, Zhuo X, Liu W, Wu J (2010) Synchronous fluorescence measurement of enrofloxacin in the pharmaceutical formulation and its residue in milks based on the yttrium (III)-perturbed luminescence. Talanta 82(5):1858–1863. doi:10.1016/j.talanta.2010.07.082

    Article  CAS  Google Scholar 

  30. Kaur K, Saini SS, Malik AK, Singh B (2012) Micelle enhanced and terbium sensitized spectrofluorimetric determination of danofloxacin in milk using molecularly imprinted solid phase extraction. Spectrochim Acta A Mol Biomol Spectrosc 96:790–795. doi:10.1016/j.saa.2012.07.083

    Article  CAS  Google Scholar 

  31. Al-Ghannam SM (2008) Atomic absorption spectroscopic, conductometric and colorimetric methods for determination of some fluoroquinolone antibacterials using ammonium reineckate. Spectrochim Acta A 69(4):1188–1194. doi:10.1016/j.saa.2007.06.023

    Article  Google Scholar 

  32. Samanidou VF, Demetriou CE, Papadoyannis IN (2003) Direct determination of four fluoroquinolones, enoxacin, norfloxacin, ofloxacin, and ciprofloxacin, in pharmaceuticals and blood serum by HPLC. Anal Bioanal Chem 375(5):623–629. doi:10.1007/s00216-003-1749-9

    CAS  Google Scholar 

  33. Hapeshi E, Achilleos A, Vasquez MI, Michael C, Xekoukoulotakis NP, Mantzavinos D, Kassinos D (2010) Drugs degrading photocatalytically: kinetics and mechanisms of ofloxacin and atenolol removal on titania suspensions. Water Res 44(6):1737–1746. doi:10.1016/j.watres.2009.11.044

    Article  CAS  Google Scholar 

  34. Xu H, Wang T, Zhao Q, Zeng Q, Wang H, Xu Y, Zhang X, Wang F, Ding L (2011) Analysis of fluoroquinolones in animal feed based on microwave-assisted extraction by LC–MS–MS determination. Chromatographia 74(3–4):267–274. doi:10.1007/s10337-011-2049-8

    Article  CAS  Google Scholar 

  35. Wei X, Zhu B, Xu Y (2005) Preparation and stability of copper particles formed using the template of hyperbranched poly(amine-ester). Colloid Polym Sci 284:102–107. doi:10.1007/s00396-005-1344-z

    Article  CAS  Google Scholar 

  36. Yang C, Zhang S, Liu Y, Huang W (2008) Electrochemical behaviors of ofloxacin and its voltammetric determination at carbon nanotubes film modified electrode. Front Chem China 3(3):353–358. doi:10.1007/s11458-008-0055-7

    Article  Google Scholar 

  37. Wang F, Zhu L, Zhang J (2014) Electrochemical sensor for levofloxacin based on molecularly imprinted polypyrrole–graphene–gold nanoparticles modified electrode. Sensors Actuators B Chem 192:642–647. doi:10.1016/j.snb.2013.11.037

    Article  CAS  Google Scholar 

  38. Uivarosi V (2013) Metal complexes of quinolone antibiotics and their applications: an update. Molecules 18(9):11153–11197. doi:10.3390/molecules180911153

    Article  CAS  Google Scholar 

  39. Zhou G, Pan J (1995) Polarographic and voltammetric behaviour of ofloxacin and its analytical application. Anal Chim Acta 307(1):49–53. doi:10.1016/0003-2670(95)00028-X

    Article  CAS  Google Scholar 

  40. Huang K-J, Liu X, Xie W-Z, Yuan H-X (2008) Voltammetric behavior of ofloxacin and its determination using a multi-walled carbon nanotubes-Nafion film coated electrode. Microchim Acta 162(1–2):227–233. doi:10.1007/s00604-008-0943-z

    Article  CAS  Google Scholar 

  41. Chen T-S, Huang K-L, Chen J-L (2012) An electrochemical approach to simultaneous determination of acetaminophen and ofloxacin. Bull Environ Contam Toxicol 89(6):1284–1288. doi:10.1007/s00128-012-0833-2

    Article  CAS  Google Scholar 

  42. Shital G, Mehta V, Sadhana R (2011) Simultaneous voltammetric determination of nitazoxanide and ofloxacin in pharmaceutical formulation. Indian J Pharm Sci 73(5):583–586. doi:10.4103/0250-474X.99022

    Article  Google Scholar 

  43. Rubin G, Blagoja J (2000) Square-wave voltammetry of ofloxacin. Bull Chem Technol Maced 19:177–181

    Google Scholar 

  44. Ribeiro FWP, Soares TRV, Oliveira SD, Melo LC, Soares JE, Becker H, De Souza D, de Lima-Neto P, Correia AN (2014) Analytical determination of nimesulide and ofloxacin in pharmaceutical preparations using square-wave voltammetry. J Anal Chem 69 (1):62–71. doi:10.1134/S1061934814010079

  45. Braga OC, Campestrini I, Vieira IC, Spinelli A (2010) Sulfadiazine determination in pharmaceuticals by electrochemical reduction on a glassy carbon electrode. J Braz Chem Soc 21:813–820. doi:10.1590/S0103-50532010000500008

    Article  CAS  Google Scholar 

  46. Tonholo J, Freitas LR, de Abreu FC, Azevedo DC, Zani CL, de Oliveira AB, Goulart MOF (1998) Electrochemical properties of biologically active heterocyclic naphthoquinones. J Braz Chem Soc 9:163–169. doi:10.1590/S0103-50531998000200008

    Article  CAS  Google Scholar 

  47. Song E, Choi JW (2013) Conducting polyaniline nanowire and its applications in chemiresistive sensing. Nanomaterials 3(3):498–523. doi:10.3390/nano3030498

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 61172005) and the National High Technology Research and Development Program of China (863 Program) (Grant No. 2012AA06A304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingdong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Lv, S., Shan, J. et al. A novel electrochemical method for ofloxacin determination based on interaction of ofloxacin with cupric ion. Ionics 21, 3117–3124 (2015). https://doi.org/10.1007/s11581-015-1492-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1492-1

Keywords

Navigation