Skip to main content
Log in

Determination of p-chloronitrobenzene by voltammetry with an electrochemically pretreated glassy carbon electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A simple and rapid method for p-chloronitrobenzene detection has been described based on electrochemical pretreatment of glassy carbon electrode (GCE) which was treated by anodic oxidation at 2.2 V or 120 s, following cathodization at −1.5 V for 60 s. The structure and morphology of the GCE surface was characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR). The electrochemical oxidization significantly increased the content of oxygen-containing functional groups in the electrode surface. The sensitivity for p-chloronitrobenzene detection was improved remarkably, and the detection limit was 1.0 × 10−3 mg L−1 (3S/N). The RSD of the voltammetric measurements was less than 6.8 % for six replicate. An electrochemical detection of p-chloronitrobenzene in spiked water sample was succeeded with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Reference

  1. Shen JM, Chen ZL, Xu ZZ, Li XY, Xu BB, Qi F (2008) Kinetics and mechanism of degradation of p-chloronitrobenzene in water by ozonation. J Hazard Mater 152:1325–1331

    Article  CAS  Google Scholar 

  2. Travlos GS, Mahler J, Ragan HA, Chou BJ, Bucher JR (1996) Thirteen-week inhalation toxicity of 2- and 4-chloronitrobenzene in F344/N rats and B6C3F1 mice. Fundam Appl Toxicol 30:75–92

    Article  CAS  Google Scholar 

  3. Li Q, Minami M, Hanaoka T, Yamamura Y (1999) Acute immunotoxicity of p-chloronitrobenzene in mice: II. Effect of p-chloronitrobenzene on the immunophenotype of murine splenocytes determined by flow cytometry. Toxicology 137:35–45

    Article  CAS  Google Scholar 

  4. Zhang LJ, Wang X, Jiao YY, Chen X, Zhou LY, Guo K, Ge FWJ (2013) Biodegradation of 4-chloronitrobenzene by biochemical cooperation between Sphingomonas sp. strain CNB3 and Burkholderia sp. strain CAN6 isolated from activated sludge. Chemosphere 91:1243–1249

    Article  CAS  Google Scholar 

  5. Jones CR, Liu YY, Sepai O, Yan HF, Sabbioni G (2006) Internal exposure, health effects, and cancer risk of humans exposed to chloronitrobenzene. Environ Sci Technol 40:387–394

    Article  CAS  Google Scholar 

  6. Arora PK, Bae HH (2014) Toxicity and microbial degradation of nitrobenzene, monochloronitrobenzenes, polynitrobenzenes, and pentachloronitrobenzene. J Chem 2014:1–12

    Google Scholar 

  7. Matsumoto M, Aiso S, Arito H, Nagano K, Yamamoto S, Matsushima T (2006) Thirteen-week oral toxicity of para- and ortho-chloronitrobenzene in rats and mice. J Toxicol Sci 31:9–22

    Article  CAS  Google Scholar 

  8. Matsumoto M, Aiso S, Senoh H, Yamazaki K, Arito H, Nagano K, Yamamoto S, Matsushima T (2006) Carcinogenicity and chronic toxicity of para-chloronitrobenzene in rats and mice by two-year feeding. J Environ Pathol Toxicol 25:571–584

    Article  CAS  Google Scholar 

  9. Xia SQ, Li HX, Zhang ZQ, Zhang YH, Yang X, Jia RY, Xie K, Xu XT (2011) Bioreduction of para-chloronitrobenzene in drinking water using a continuous stirred hydrogen-based hollow fiber membrane biofilm reactor. J Hazard Mater 192:593–559

    Article  CAS  Google Scholar 

  10. Li BZ, Zhu J (2014) Removal of p-chloronitrobenzene from groundwater: effectiveness and degradation mechanism of a heterogeneous nanoparticulate zero-valent iron (NZVI)-induced Fenton process. Chem Eng J 255:225–232

    Article  CAS  Google Scholar 

  11. Wang ML, Rajendran V (2007) Ethoxylation of p-chloronitrobenzene using phase-transfer catalysts by ultrasound irradiation—a kinetic study. Ultrason Sonochem 14:368–374

    Article  CAS  Google Scholar 

  12. Schwartz RS, Benjamin CR (1982) Voltammetric determination of morphine in poppy straw concentrate at a glassy-carbon electrode. Anal Chim Acta 141:365–369

    Article  CAS  Google Scholar 

  13. Li F, Song JX, Gao DM, Zhang QX, Han DX, Niu L (2009) Simple and rapid voltammetric determination of morphine at electrochemically pretreated glassy carbon electrodes. Talanta 79:845–850

    Article  CAS  Google Scholar 

  14. Abdessamad N, Adhoum N (2009) Spontaneous adsorption and electrochemical behaviour of safranine O at electrochemically activated glassy carbon electrode. Mater Chem Phys 116:557–562

    Article  CAS  Google Scholar 

  15. Dekanski A, Stevanović J, Stevanović R, Nikolić BŽ, Jovanović VM (2001) Glassy carbon electrodes: I. Characterization and electrochemical activation. Carbon 39:1195–1205

    Article  CAS  Google Scholar 

  16. Pérez-Mendoza M, Schumacher C, Suárez-García F, Almazán-Almazán MC, Domingo-García M, López-Garzón FJ, Seaton NA (2006) Analysis of the microporous texture of a glassy carbon by adsorption measurements and Monte Carlo simulation. Evolution with chemical and physical activation. Carbon 44:638–645

    Article  Google Scholar 

  17. Ramachandran R, Mani V, Chen SM, Gnana-kumar G, Govindasamy M (2015) Recent developments in electrode materials and methods for pesticide analysis—an overview. Int J Electrochem Sci 10:859–869

    Google Scholar 

  18. Zhang HH, Coury LA (1993) Effects of high-intensity ultrasound on glassy-carbon electrodes. Anal Chem 65:1552–1558

    Article  CAS  Google Scholar 

  19. Upadhyay PK (1989) A simple procedure for activating a glassy-carbon electrode. Electroanal Chem 271:339–343

    Article  CAS  Google Scholar 

  20. Bowling RJ, Packard RT, Mccreery RL (1989) Activation of highly ordered pyrolytic-graphite for heterogeneous electron-transfer—relationship between electrochemical performance and carbon microstructure. J Am Chem Soc 111:1217–1223

    Article  CAS  Google Scholar 

  21. Cabaniss GE, Diamantis AA, Murphy WR Jr, Linton RW, Meyer TJ (1985) Electrocatalysis of proton-coupled electron-transfer reactions at glassy carbon electrodes. J Am Chem Soc 107:1845–1853

    Article  CAS  Google Scholar 

  22. Dai HP, Shiu KK (1996) Voltammetric studies of electrochemical pretreatment of rotating-disc glassy carbon electrodes in phosphate buffer. J Electroanal Chem 419:7–14

    Article  CAS  Google Scholar 

  23. Zhao QL, Zhang ZL, Bao L, Pang DW (2008) Surface structure-related electrochemical behaviors of glassy carbon electrodes. Electrochem Commun 10:181–185

    Article  CAS  Google Scholar 

  24. Geremedhin W, Amare M, Admassie S (2013) Electrochemically pretreated glassy carbon electrode for electrochemical detection of fenitrothion in tap water and human urine. Electrochim Acta 87:749–755

    Article  CAS  Google Scholar 

  25. Ye Z, Li YF, Wen JG, Li KJ, Ye BX (2014) Study of the voltammetric behavior of jatrorrhizine and its sensitive determination at electrochemical pretreatment glassy carbon electrode. Talanta 126:38–45

    Article  CAS  Google Scholar 

  26. Li KJ, Li YF, Yang LX, Wang WJ, Ye BX (2014) Sensitive determination of urapidil at an electrochemically pretreated glassy carbon electrode by linear sweep voltammetry. Anal Methods 6:6548–6554

    Article  CAS  Google Scholar 

  27. Diaz T, Paulo C, Javier Arevalo F, Alicia Zon M, Fernández H (2015) Studies of the electrochemical behavior of moniliformin mycotoxin and its sensitive determination at pretreated glassy carbon electrodes in a non-aqueous medium. J Electroanal Chem 738:40–46

    Article  Google Scholar 

  28. Huang DQ, Cheng Y, Xu HY, Zhang H, Sheng LQ, Xu HJ, Liu ZD, Wu H, Fan SH (2015) The determination of uric acid in human body fluid samples using glassy carbon electrode activated by a simple electrochemical method. J Solid State Electrochem 19:435–443

    Article  CAS  Google Scholar 

  29. Jia DL, Gao J, Wang L, Gao YD, Ye BX (2015) Electrochemical behavior of the insecticide pymetrozine at an electrochemically pretreated glassy carbon electrode and its analytical application. Anal Methods 7:9100–9107

    Article  CAS  Google Scholar 

  30. Gu HY, Yu AM, Chen HY (2001) Electrochemical behavior and simultaneous determination of vitamin B-2, B-6, and C at electrochemically pretreated glassy carbon electrode. Anal Lett 34:2361–2374

    Article  CAS  Google Scholar 

  31. Ilangovan G, Chandrasekara Pillai K (1999) Mechanism of activation of glassy carbon electrodes by cathodic pretreatment. J Solid State Electrochem 3:357–360

    Article  CAS  Google Scholar 

  32. Núñez-Vergara LJ, Bonta M, Sturm JC, Navarrete PA, Bollo S, Squella JA (2001) Electrochemical reduction of nitroso compounds: voltammetric, UV–vis and EPR characterization of ortho- and meta-nitrosotoluene derivatives. J Electroanal Chem 506:48–60

    Article  Google Scholar 

  33. Anjo DM, Kahr M, Khodabakhsh MM, Nowinski S, Wanger M (1989) Electrochemical activation of carbon electrodes in base: minimization of dopamine adsorption and electrode capacitance. Anal Chem 61:2603–2608

    Article  CAS  Google Scholar 

  34. Hu I, Kuwana T (1986) Oxidative mechanism of ascorbic acid at glassy carbon electrode. Anal Chem 58:3235–3239

    Article  CAS  Google Scholar 

  35. Kuo TC, McCreery RL (1999) Surface chemistry and electron-transfer kinetics of hydrogen-modified glassy carbon electrodes. Anal Chem 71:1553–1560

    Article  CAS  Google Scholar 

  36. Ma CA, Ge XF, Zhu YH, Wang LB (2006) Study on electroreduction performance and mechanism of substituted aryl nitrobenzene. J Chem Eng Chin Univ 20:728–733

    CAS  Google Scholar 

  37. Chen PH, McCreery LR (1996) Control of electron transfer kinetics at glassy carbon electrodes by specific surface modification. Anal Chem 68:3958–3965

    Article  CAS  Google Scholar 

  38. Shi K, Shiu KK (2004) Adsorption of some quinone derivatives at electrochemically activated glassy carbon electrodes. J Electroanal Chem 574:63–70

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobin Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Zheng, W. & Zhang, R. Determination of p-chloronitrobenzene by voltammetry with an electrochemically pretreated glassy carbon electrode. J Solid State Electrochem 20, 3323–3330 (2016). https://doi.org/10.1007/s10008-016-3302-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3302-8

Keywords

Navigation