A highly sensitive tetracycline sensor based on a combination of magnetic molecularly imprinted polymer nanoparticles and surface plasmon resonance detection


A method is reported for in-situ detection of the antibiotic tetracycline (TC). It is based on a combination of extraction of TC by magnetic molecularly imprinted polymers nanoparticles (MMIPs NPs) and detection by surface plasmon resonance (SPR). The TC-captured MMIPs NPs were flowed over the surface of the SPR chip that was modified with mercaptoethylamine. The SPR signal undergoes a strong increase through the use of MMIPs NPs. It increases linearly in the 5.0–100 pg·mL−1 TC concentration range, and the detection limit is as low as 1.0 pg·mL−1 (at S/N = 3). This method shows selectivity to TC compared with structurally analogues. In order to demonstrate the power of the method, it was applied to the analysis of milk spiked with TC. These results were validated by comparing them to those of an enzyme-linked immunoassay. The average recovery is in the range of 95.7–104.6%.

Schematic representation of a surface plasmon resonance assay for the sensitive determination of tetracycline in milk using the magnetic molecularly imprinted polymers nanoparticles that can extract tetracycline and amplify the SPR signal.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Jing T, Wang Y, Dai Q, Xia HA, Niu JW, Hao QL, Mei SR, Zhou YK (2010) Preparation of mixed-templates molecularly imprinted polymers and investigation of the recognition ability for tetracycline antibiotics. Biosens Bioelectron 25(10):2218–2224. https://doi.org/10.1016/j.bios.2010.02.023

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Lv YK, Wang LM, Yang L, Zhao CX, Sun HW (2012) Synthesis and application of molecularly imprinted poly (methacrylic acid)-silica hybrid composite material for selective solid-phase extraction and high-performance liquid chromatography determination of oxytetracycline residues in milk. J Chromatogr A 1227:48–53. https://doi.org/10.1016/j.chroma.2011.12.108

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Gondová Z, Kožárová I, Poláková Z, Mad´arová M (2014) Comparison of four microbiological inhibition tests for the screening of antimicrobial residues in the tissues of food-producing animals. Ital J Anim Sci 13(4):728–734. https://doi.org/10.4081/ijas.2014.3521

    CAS  Article  Google Scholar 

  4. 4.

    Shahbazi Y, Ahmadi F, Karami N (2015) Screening, determination and confirmation of tetracycline residues in chicken tissues using four-plate test, ELISA and HPLC-UV methods: comparison between correlation results. Food Agric Immunol 26(6):821–834. https://doi.org/10.1080/09540105.2015.1036357

    CAS  Article  Google Scholar 

  5. 5.

    Chen YN, Kong DZ, Liu LQ, Song SS, Kuang H, Xu CL (2016) Development of an ELISA and immunochromatographic assay for tetracycline, oxytetracycline, and chlortetracycline residues in milk and honey based on the class-specific monoclonal antibody. Food Anal Methods 9(4):905–914. https://doi.org/10.1007/s12161-015-0262-z

    Article  Google Scholar 

  6. 6.

    Benvidi A, Tezerjani MD, Moshtaghiun SM, Mazloum-Ardakani M (2016) An aptasensor for tetracycline using a glassy carbon modified with nanosheets of graphene oxide. Microchim Acta 183(5):1797–1804. https://doi.org/10.1007/s00604-016-1810-y

    CAS  Article  Google Scholar 

  7. 7.

    Zhang XP, Zhang RR, Yang AJ, Wang Q, Kong RM, Qu FL (2017) Aptamer based photoelectrochemical determination of tetracycline using a spindle-like ZnO-CdS@Au nanocomposite. Microchim Acta 184(11):4367–4374. https://doi.org/10.1007/s00604-017-2477-8

    CAS  Article  Google Scholar 

  8. 8.

    Shalaby AR, Salama NA, Abou-Raya SH, Emam WH, Mehaya FM (2011) Validation of HPLC method for determination of tetracycline residues in chicken meat and liver. Food Chem 124(4):1660–1666. https://doi.org/10.1016/j.foodchem.2010.07.048

    CAS  Article  Google Scholar 

  9. 9.

    Ahmadi F, Shahbazi Y, Karami N (2015) Determination of tetracyclines in meat using two phases freezing extraction method and HPLC-DAD. Food Anal Methods 8(7):1883–1891. https://doi.org/10.1007/s12161-014-0073-7

    Article  Google Scholar 

  10. 10.

    Zhu WX, Yang JZ, Wang ZX, Wang CJ, Liu YF, Zhang L (2016) Rapid determination of 88 veterinary drug residues in milk using automated TurborFlow online clean-up mode coupled to liquid chromatography-tandem mass spectrometry. Talanta 148:401–411. https://doi.org/10.1016/j.talanta.2015.10.037

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Gavilán RE, Nebot C, Miranda JM, Martín-Gómez Y, Vázquez-Belda B, Franco CM, Cepeda A (2016) Analysis of tetracyclines in medicated feed for food animal production by HPLC-MS/MS. Antibiot 5:1): 1–1):10. https://doi.org/10.3390/antibiotics5010001

    CAS  Article  Google Scholar 

  12. 12.

    Dumont V, Huet AC, Traynor I, Elliott C, Delahaut P (2006) A surface plasmon resonance biosensor assay for the simultaneous determination of thiamphenicol, florefenicol, florefenicol amine and chloramphenicol residues in shrimps. Anal Chim Acta 567(2):179–183. https://doi.org/10.1016/j.aca.2006.03.028

    CAS  Article  Google Scholar 

  13. 13.

    Kim S, Lee HJ (2017) Gold nanostar enhanced surface plasmon resonance detection of an antibiotic at attomolar concentrations via an aptamer-antibody sandwich assay. Anal Chem 89(12):6624–6630. https://doi.org/10.1021/acs.analchem.7b00779

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Wang S, Dong YY, Liang XG (2018) Development of a SPR aptasensor containing oriented aptamer for direct capture and detection of tetracycline in multiple honey samples. Biosens Bioelectron 109:1–7. https://doi.org/10.1016/j.bios.2018.02.051

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Wang JL, Munir A, Zhu ZZ, Zhou HS (2010) Magnetic nanoparticle enhanced surface plasmon resonance sensing and its application for the ultrasensitive detection of magnetic nanoparticle-enriched small molecules. Anal Chem 82(16):6782–6789. https://doi.org/10.1021/ac100812c

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Garibo D, Campbell K, Casanova A, de la lglesia P, Fernández-Tejedor M, Diogène J, Elliott CT, Campàs M (2014) SPR immunosensor for the detection of okadaic acid in mussels using magnetic particles as antibody carriers. Sensor Actuat B-Chem 190:822–828. https://doi.org/10.1016/j.snb.2013.09.037

    CAS  Article  Google Scholar 

  17. 17.

    Jia YT, Peng Y, Bai JL, Zhang XH, Cui YG, Ning BA, Cui JS, Gao ZX (2018) Magnetic nanoparticle enhanced surface plasmon resonance sensor for estradiol analysis. Sensor Actuat B-Chem 254:629–635. https://doi.org/10.1016/j.snb.2017.07.061

    CAS  Article  Google Scholar 

  18. 18.

    Vlatakis G, Andersson LI, Müller R, Mosbach K (1993) Drug assay using antibody mimics made by molecular imprinting. Nature 361(6413):645–647. https://doi.org/10.1038/361645a0

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Xiao DL, Jiang Y, Bi YP (2018) Molecularly imprinted polymers for the detection of illegal drugs and additives: a review. Microchim Acta 185:247. https://doi.org/10.1007/s00604-018-2735-4

    CAS  Article  Google Scholar 

  20. 20.

    Hu MH, Huang PC, Suo LL, Wu FY (2018) Polydopamine-based molecularly imprinting polymers on magnetic nanoparticles for recognition and enrichment of ochratoxins prior to their determination by HPLC. Microchim Acta 185:300. https://doi.org/10.1007/s00604-018-2826-2

    CAS  Article  Google Scholar 

  21. 21.

    Wen TT, Zhu WY, Xue C, Wu JH, Han Q, Wang X, Zhou XM, Jiang HJ (2014) Novel electrochemical sensing platform based on magnetic field-induced self-assembly of Fe3O4@polyaniline nanoparticles for clinical detection of creatinine. Biosens Bioelectron 56:180–185. https://doi.org/10.1016/j.bios.2014.01.013

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Han Q, Wang X, Yang ZY, Zhu WY, Zhou XM, Jiang HJ (2014) Fe3O4@rGO doped molecularly imprinted polymer membrane based on magnetic field directed self-assembly for the determination of amaranth. Talanta 123:101–108. https://doi.org/10.1016/j.talanta.2014.01.060

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Hassan AHA, Moura SL, Ali FHM, Moselhy WA, Sotomayor MDT, Pividori MI (2018) Electrochemical sensing of methyl parathion on magnetic molecularly imprinted polymer. Biosens Bioelectron 118:181–187. https://doi.org/10.1016/j.bios.2018.06.052

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Wang JL, Zhu ZZ, Munir A, Zhou H (2011) Fe3O4 nanoparticles-enhanced SPR sensing for ultrasensitive sandwich bio-assay. Talanta 84(3):783–788. https://doi.org/10.1016/j.talanta.2011.02.020

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Lou ZC, Zhang YN, Zhang XH, Zhou ZW, Hu XD, Zhang HQ (2015) A facile approach to monodisperse Au nanoparticles on Fe3O4 nanostructures with surface plasmon resonance amplification. J Nanosci Nanotechnol 15(3):2371–2378. https://doi.org/10.1166/jnn.2015.9095

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Yao GH, Liang RP, Huang CF, Wang Y, Qiu JD (2013) Surface plasmon resonance sensor based on magnetic molecularly imprinted polymers amplification for pesticide recognition. Anal Chem 85(24):11944–11951. https://doi.org/10.1021/ac402848x

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Zhou CJ, Rong PF, Zhang WJ, Zhou JD, Zhang QL, Wang W, Zou BS (2010) Fulvic acid coated iron oxide nanoparticles for magnetic resonance imaging contrast agent. Funct Mater Lett 3(3):197–200. https://doi.org/10.1142/S179360471000124X

    CAS  Article  Google Scholar 

  28. 28.

    Singh D, Gautam RK, Kumar R, Shukla BK, Shankar V, Krishna V (2014) Citric acid coated magnetic nanoparticles: synthesis, characterization and application in removal of Cd(II) ions from aqueous solution. J Water Process Eng 4:233–241. https://doi.org/10.1016/j.jwpe.2014.10.005

    Article  Google Scholar 

  29. 29.

    Zhang XP, Chen LG, Xu Y, Wang H, Zeng QL, Zhao Q, Ren NQ, Ding L (2010) Determination of beta-lactam antibiotics in milk based on magnetic molecularly imprinted polymer extraction coupled with liquid chromatography-tandem mass spectrometry. J Chromatogr B 878(32):3421–3426. https://doi.org/10.1016/j.jchromb.2010.10.030

    CAS  Article  Google Scholar 

  30. 30.

    Ahmadi F, Rezaei H, Tahvilian R (2012) Computational-aided design of molecularly imprinted polymer for selective extraction of methadone from plasma and saliva and determination by gas chromatography. J Chromatogr A 1270:9–19. https://doi.org/10.1016/j.chroma.2012.10.038

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Ahmadi F, Yawari E, Nikbakht M (2014) Computational design of an enantioselective molecular imprinted polymer for the solid phase extraction of S-warfarin from plasma. J Chromatogr A 1338:9–16. https://doi.org/10.1016/j.chroma.2014.02.055

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Ramezani M, Danesh NM, Lavaee P, Abnous K, Taghdisi SM (2015) A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline. Biosens Bioelectron 70:181–187. https://doi.org/10.1016/j.bios.2015.03.040

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Hou WJ, Shi ZQ, Guo YM, Sun X, Wang XY (2017) An interdigital array microelectrode aptasensor based on multi-walled carbon nanotubes for detection of tetracycline. Bioprocess Biosyst Eng 40(9):1419–1425. https://doi.org/10.1007/s00449-017-1799-6

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Qi MY, Tu CY, Dai YY, Wang WP, Wang AJ, Chen JR (2018) A simple colorimetric analytical assay using gold nanoparticles for specific detection of tetracycline in environmental water samples. Anal Methods 10(27):3402–3407. https://doi.org/10.1039/C8AY00713F

    CAS  Article  Google Scholar 

  35. 35.

    He W, Sun XY, Weng WT, Liu B (2018) Fluorescence enhancement of carbon dots by graphene for highly sensitive detection of tetracycline hydrochloride. RSC Adv 8(46):26224–26229. https://doi.org/10.1039/C8RA04581J

    Article  Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (No.31671931; 31601551) and “1515” talent cultivation plan of Hunan Agricultural University.

Author information



Corresponding author

Correspondence to Xia Liu.

Ethics declarations

The author(s) declare that they have no competing interests. This article does not contain any studies with human oranimal subjects. Informed consent was obtained from all individual participants include in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOC 3784 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Li, P., Qin, S. et al. A highly sensitive tetracycline sensor based on a combination of magnetic molecularly imprinted polymer nanoparticles and surface plasmon resonance detection. Microchim Acta 186, 637 (2019). https://doi.org/10.1007/s00604-019-3718-9

Download citation


  • Surface plasmon resonance
  • Magnetic molecularly imprinted polymers nanoparticles
  • Tetracycline
  • Assay
  • Specific recognition