Skip to main content

Advertisement

Log in

An interdigital array microelectrode aptasensor based on multi-walled carbon nanotubes for detection of tetracycline

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study an impedance aptasensor was designed for sensitive, selective, and fast detection of tetracycline (TET) based on an interdigital array microelectrode (IDAM). The IDAM was integrated with impedance detection to miniaturize the conventional electrodes, enhance the sensitivity, shorten the detection time, and minimize interfering effects of non-target analytes in the solution. Due to their excellent conductivity, good biocompatibility, the multi-walled carbon nanotubes (MWCNTs) were used to modify the IDAM to immobilize TET aptamer effectively. The proposed aptasensor produced a sensitive impedance change which was characterized by the electrochemical impedance spectroscopy (EIS). With the addition of TET, the formation of TET–aptamer complex on the surface of MWCNTs modified electrode resulted in an increase of electron transfer resistance (R et). The change of R et depends on the concentration of TET, which is applied for the quantification of TET. A wide linear range was obtained from 10−9 to 10−3 M. The linear regression equation was yR) = 21.310 × x(LogC) (M) + 217.25. It was successfully applied to detect TET in real milk samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kishida K (2011) Simplified extraction of tetracycline antibiotics from milk using a centrifugal ultrafiltration device. Food Chem 126(2):687–690

    Article  CAS  Google Scholar 

  2. Fritz JW, Zuo Y (2007) Simultaneous determination of tetracycline, oxytetracycline, and 4-epitetracycline in milk by high-performance liquid chromatography. Food Chem 105(3):1297–1301

    Article  CAS  Google Scholar 

  3. Ng K, Linder SW (2003) HPLC separation of tetracycline analogues: comparison study of laser-based polarimetric detection with UV detection. J Chromatogr Sci 41(9):460–466

    Article  CAS  Google Scholar 

  4. Martel AC, Zeggane S, Drajnudel P, Faucon JP, Aubert M (2006) Tetracycline residues in honey after hive treatment. Food Addit Contam 23(3):265–273

    Article  CAS  Google Scholar 

  5. Kowalski P (2008) Capillary electrophoretic method for the simultaneous determination of tetracycline residues in fish samples. J Pharm Biomed 47(3):487–493

    Article  CAS  Google Scholar 

  6. Deng BY, Xu QX, Lu H, Ye L, Wang YZ (2012) Pharmacokinetics and residues of tetracycline in crucian carp muscle using capillary electrophoresis on-line coupled with electrochemiluminescence detection. Food Chem 134(4):2350–2354

    Article  CAS  Google Scholar 

  7. Shen LM, Chen ML, Chen XW (2011) A novel flow-through fluorescence optosensor for the sensitive determination of tetracycline. Talanta 85(3):1285–1290

    Article  CAS  Google Scholar 

  8. Rodríguez N, Real BD, Cruz Ortiz M, Sarabia LA, Herrero A (2009) Usefulness of parallel factor analysis to handle the matrix effect in the fluorescence determination of tetracycline in whey milk. Anal Chim Acta 632(1):42–51

    Article  Google Scholar 

  9. Oka H, Ito Y, Ikai Y, Kagami T, Harada K (1998) Mass spectrometric analysis of tetracycline antibiotics in foods. J Chromatogr A 812(1–2):309–319

    Article  Google Scholar 

  10. Dasenaki ME, Thomaidis NS (2010) Multi-residue determination of seventeen sulfonamides and five tetracyclines in fish tissue using a multi-stage LC-ESIMS/MS approach based on advanced mass spectrometric techniques. Anal Chim Acta 672(1–2):93–102

    Article  CAS  Google Scholar 

  11. Mokhtarzadeh A, Dolatabadi JEN, Abnous K, de la Guardia Miguel, Ramezani Mohammad (2015) Nanomaterial-based cocaine aptasensors. Biosens Bioelectron 68:95–106

    Article  CAS  Google Scholar 

  12. Sun X, Li FL, Shen GH, Huang JD, Wang XY (2014) Aptasensor based on the synergistic contributions of chitosan–gold nanoparticles, graphene–gold nanoparticles and multi-walled carbon nanotubes–cobalt phthalocyanine nanocomposites for kanamycin detection. Analyst 139(1):299–308

    Article  CAS  Google Scholar 

  13. Li FL, GuoYM Sun X, Wang XY (2014) Aptasensor based on thionine, graphene–polyaniline composite film, and gold nanoparticles for kanamycin detection. Eur Food Res Technol 239(2):227–236

    Article  CAS  Google Scholar 

  14. Shen GH, Guo YM, Sun X, Wang XY (2014) Electrochemical aptasensor based on prussian blue-chitosan-glutaraldehyde for the sensitive determination of tetracycline. Nano-Micro Lett 6(2):143–152

    Article  CAS  Google Scholar 

  15. Min J, Baeumner AJ (2004) Characterization and optimization of interdigitated ultramicroelectrode arrays as electrochemical biosensor transducers. Electroanalysis 16(9):724–729

    Article  CAS  Google Scholar 

  16. Berggren C, Bjarnason B, Johansson G (2001) Capacitive biosensors. Electroanalysis 13(3):173–180

    Article  CAS  Google Scholar 

  17. Kim SK, Hesketh PJ, Li C, Thomas JH, Halsall HB, Heineman WR (2004) Fabrication of comb interdigitated electrodes array (IDA) for a microbead-based electrochemical assay system. Biosens Bioelectron 20(4):887–894

    Article  CAS  Google Scholar 

  18. Chang BW, Chen CH, Ding SJ, Chen DCH, Chang HC (2005) Impedimetric monitoring of cell attachment on interdigitated microelectrodes. Sens Actuat B Chem 105(2):159–163

    Article  CAS  Google Scholar 

  19. Čerňanská M, Tomčík P, Jánošíková Z, Rievaj M, Bustin D (2011) Indirect voltammetric detection of fluoride ions in toothpaste on a comb-shaped interdigitated microelectrode array. Talanta 83(5):1472–1475

    Article  Google Scholar 

  20. Tang X, Flandre D, Raskin JP, Nizet Y, Moreno-Hagelsieb L, Pampin R, Francis LA (2011) A new interdigitated array microelectrode-oxide-silicon sensor with label-free, high sensitivity and specificity for fast bacteria detection. Sens Actuat B Chem 156(2):578–587

    Article  CAS  Google Scholar 

  21. Yan X, Wang M, An D (2011) Progress of interdigitated array microelectrodes based impedance immunosensor. Chin J Anal Chem 39(10):1601–1610

    Article  CAS  Google Scholar 

  22. Bogomolova A, Komarova E, Reber K, Gerasimov T, Yavuz O, Bhatt S, Aldissi M (2009) Challenges of electrochemical impedance spectroscopy in protein biosensing. Anal Chem 81(10):3944–3949

    Article  CAS  Google Scholar 

  23. Li BL, Wang YL, Wei H, Dong SJ (2008) Amplified electrochemical aptasensor taking AuNPs based sandwich sensing platform as a model. Biosens Bioelectron 23:965–970

    Article  CAS  Google Scholar 

  24. Li XX, Shen LH, Zhang DD, Qi HL, Gao Q, Ma F, Zhang CX (2008) Electrochemical impedance spectroscopy for study of aptamer–thrombin interfacial interactions. Biosens Bioelectron 23:1624–1630

    Article  CAS  Google Scholar 

  25. Kashefi-Kheyrabadi L, Mehrgardi MA (2012) Design and construction of a label free aptasensor for electrochemical detection of sodium diclofenac. Biosens Bioelectron 33:184–189

    Article  CAS  Google Scholar 

  26. Fan LF, Zhao GH, Shi HJ, Liu MC, Li ZX (2013) A highly selective electrochemical impedance spectroscopy-based aptasensor for sensitive detection of acetamiprid. Biosens Bioelectron 43:12–18

    Article  CAS  Google Scholar 

  27. Chen ZB, Chen L, Ma H, Zhou T, Li XX (2013) Aptamer biosensor for label-free impedance spectroscopy detection of potassium ion based on DNA G-quadruplex conformation. Biosens Bioelectron 48:108–112

    Article  CAS  Google Scholar 

  28. Qi HL, Li SG, Li CC, Li XX, Gao Q, Zhang CX (2013) Sensitive and antifouling impedimetric aptasensor for the determination of thrombin in undiluted serum sample. Biosens Bioelectron 39:324–328

    Article  CAS  Google Scholar 

  29. Ocaña C, Arcay E, Valle MD (2014) Label-free impedimetric aptasensor based on epoxy-graphite electrode for the recognition of cytochrome c. Sens Actuat B Chem 191:860–865

    Article  Google Scholar 

  30. Yang L, Li Y, Erf GF (2004) Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157:H7. Anal Chem 76(4):1107–1113

    Article  CAS  Google Scholar 

  31. Radke SM, Alocilja EC (2004) Design and fabrication of a microimpedance biosensor for bacterial detection. IEEE Sens J 4(4):434–440

    Article  CAS  Google Scholar 

  32. Radke SM, Alocilja EC (2005) A high density microelectrode array biosensor for detection of E. coli O157:H7. Biosens Bioelectron 20(8):1662–1667

    Article  CAS  Google Scholar 

  33. Wu L, Xiong EH, Zhang X, Zhang XH, Chen JH (2014) Nanomaterials as signal amplification elements in DNA-based electrochemical sensing. Nano Today 9:197–211

    Article  CAS  Google Scholar 

  34. Babaei A, Reza A, Farahani TIK (2013) Nanomolar simultaneous determination of levodopa and melatonin at a new cobalt hydroxide nanoparticles and multi-walled carbon nanotubes composite modified carbon ionic liquid electrode. Sens Actuat B Chem 183:265–272

    Article  CAS  Google Scholar 

  35. Kesik M, Kanik FE, Turan J, Kolb M, Timur S, Bahadir M, Toppare L (2014) An acetylcholinesterase biosensor based on a conducting polymer using multiwalled carbon nanotubes for amperometric detection of organophosphorous pesticides. Sens Actuat B Chem 205:39–49

    Article  CAS  Google Scholar 

  36. Jiao YC, Jia HY, Guo YM, Zhang HY, Wang ZQ, Sun X, Zhao J (2016) An ultrasensitive aptasensor for chlorpyrifos based on ordered mesoporous carbon/ferrocene hybrid multiwalled carbon nanotubes. RSC Adv 6:58541–58548

    Article  CAS  Google Scholar 

  37. Wan YY, Lu R, Xiao L, Du YM, Miyakoshi T, Chen CL (2010) Effects of organic solvents on the activity of free and immobilised laccase from Rhus vernicifera. Int J Biol Macromol 47:488–495

    Article  CAS  Google Scholar 

  38. Mohamed SA, Al-Malki AL, Kumosani TA, El-Shishtawy RM (2013) Horseradish peroxidase and chitosan: activation, immobilization and comparative results. Int J Biol Macromol 60:295–300

    Article  CAS  Google Scholar 

  39. Ir W, Oliveira ZD, Vieira IC (2006) Immobilization procedures for the development of a biosensor for determination of hydroquinone using chitosan and gilo (Solanum gilo). Enzyme Microb Technol 38(3–4):449–456

    Google Scholar 

  40. Niazi JH, Lee SJ, Gu MB (2008) Single-stranded, DNA aptamers specific for antibiotics tetracyclines. Bioorg Med Chem 16(15):7245–7253

    Article  CAS  Google Scholar 

  41. Zhou L, Li DJ, Gai L, Wang JP, Li YB (2012) Electrochemical aptasensor for the detection of tetracycline with multi-walled carbon nanotubes amplification. Sens Actuat B Chem 162(1):201–208

    Article  CAS  Google Scholar 

  42. Chen M, Hou CJ, Huo DQ, Fa HB, Zhao YN, Shen CH (2017) A sensitive electrochemical DNA biosensor based on three-dimensional nitrogen-doped graphene and Fe3O4 nanoparticles. Sens Actuat B Chem 239:421–442

    Article  CAS  Google Scholar 

  43. Varshney M, Li YB (2007) Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples. Biosens Bioelectron 22(11):2408–2414

    Article  CAS  Google Scholar 

  44. Luo YL, Xu JY, Li Y, Gao HT, Guo JJ, Shen F, Sun CY (2015) A novel colorimetric aptasensor using cysteamine-stabilized gold nanoparticles as probe for rapid and specific detection of tetracycline in raw milk. Food Control 54:7–15

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 30972055, 31101286, 31471641), Agricultural Science and Technology Achievements Transformation Fund Projects of the Ministry of Science and Technology of China (No. 2011GB2C60020), Special Project of Independent Innovation of Shandong Province (2014CGZH0703), Shandong Provincial Natural Science Foundation, China (ZR2014CM009, ZR2015CM016, ZR2016CM29), Higher Education Superior Discipline Team Training Program of Shandong Province and Science and Technology Project of Shandong Province, China (No. J11LD23).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yemin Guo or Xia Sun.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, W., Shi, Z., Guo, Y. et al. An interdigital array microelectrode aptasensor based on multi-walled carbon nanotubes for detection of tetracycline. Bioprocess Biosyst Eng 40, 1419–1425 (2017). https://doi.org/10.1007/s00449-017-1799-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1799-6

Keywords

Navigation