Skip to main content
Log in

Amperometric sensor for dopamine based on surface-graphenization pencil graphite electrode prepared by in-situ electrochemical delamination

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A surface-graphenized pencil graphite electrode (SGPGE) served as an amperometric sensor for dopamine (DA). It was prepared through a one-step in-situ electrochemical graphene delamination. The graphite particles on the outer surface of the pencil graphite electrode (PGE) were delaminated by controlling the electrochemical delaminating conditions such as the applied anodic voltage and polarization duration, as well as the kind of electrolytes. The best conditions were identified by scanning electron microscopy, Raman spectra, cyclic voltammetry and differential pulse voltammetry (DPV). As a result, the electrode was endowed with an optimum combination of graphene delamination efficiency and electrochemical activity. The electrochemical treatment activates the surface sensing sites and improves the sensing performance. The NaOH-teated anodically graphenized electrode was used to sense dopamine by DPV. The best oxidation voltage of dopamine is at around 0.17 V (vs. SCE). The electrode respondsy to dopamine in the ranges of 0.15 to 45 μM, the detection limit is 8.2 nM (S/N = 3), and the sensitivity is 20.81 μA μM−1 cm−2. In real human urine samples, the sensor exhibited detection recoveries of 97.4–98.8% and low relative standard deviations of 3.49–3.92%.

Schematic presentation of a surface-graphenized pencil graphite electrode (SGPGE) for detecting dopamine. It was prepared by a one-step in situ electrochemical graphene delamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5 a
Fig. 6 a
Fig. 7 a

Similar content being viewed by others

References

  1. Cai J, Huang J, Ge M, Iocozzia J, Lin Z, Zhang K-Q, Lai Y (2017) Immobilization of Pt nanoparticles via rapid and reusable electropolymerization of dopamine on TiO2 nanotube arrays for reversible SERS substrates and nonenzymatic glucose sensors. Small 13(19). https://doi.org/10.1002/smll.201604240

    Article  Google Scholar 

  2. Masoud T, Roman I, Sergei B, Habib KS, Irina H (2017) Ultra-sensitive voltammetric simultaneous determination of dopamine, uric acid and ascorbic acid based on a graphene-coated alumina electrode. Microchim Acta 184:4603–4610. https://doi.org/10.1007/s00604-017-2510-y

    Article  CAS  Google Scholar 

  3. Wu B, Miao C, Yu L, Wang ZW, Huang CH, Jia N (2014) Sensitive electrochemiluminescence sensor based on ordered mesoporous carbon composite film for dopamine. Sensor Actuat B-Chem 195:22–27. https://doi.org/10.1016/j.snb.2014.01.012

    Article  CAS  Google Scholar 

  4. Saenz HSC, Hernandez-Saravia LP, Selva JSG, Sukeri A, Espinoza-Montero PJ, Bertotti M (2018) Electrochemical dopamine sensor using a nanoporous gold microelectrode: a proof-of-concept study for the detection of dopamine release by scanning electrochemical microscopy. Microchim Acta 185(8):367. https://doi.org/10.1007/s00604-018-2898-z

    Article  CAS  Google Scholar 

  5. Zhu Q, Bao J, Huo D, Yang M, Hou C, Guo J, Chen M, Fa H, Luo X, Ma Y (2017) 3D graphene hydrogel – gold nanoparticles nanocomposite modified glassy carbon electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid. Sensor Actuat B-Chem 238:1316–1323. https://doi.org/10.1016/j.snb.2016.09.116

    Article  CAS  Google Scholar 

  6. Lim SK, Chen P, Lee FL, Moochhala S, Liedberg B (2015) Peptide-assembled graphene oxide as a fluorescent turn-on sensor for lipopolysaccharide (endotoxin) detection. Anal Chem 87(18):9408–9412. https://doi.org/10.1021/acs.analchem.5b02270

    Article  CAS  PubMed  Google Scholar 

  7. Yuan Q, Liu Y, Ye C, Sun H, Dai D, Wei Q, Lai G, Wu T, Yu A, Fu L, Chee KWA, Lin CT (2018) Highly stable and regenerative graphene-diamond hybrid electrochemical biosensor for fouling target dopamine detection. Biosens Bioelectron 111:117–123. https://doi.org/10.1016/j.bios.2018.04.006

    Article  CAS  PubMed  Google Scholar 

  8. Novoselov KS, Fal'ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490(7419):192–200. https://doi.org/10.1038/nature11458

    Article  CAS  PubMed  Google Scholar 

  9. Sinha A, Dhanjai JR, Zhao H, Karolia P, Jadon N (2018) Voltammetric sensing based on the use of advanced carbonaceous nanomaterials: a review. Mikrochim Acta 185(2):89. https://doi.org/10.1007/s00604-017-2626-0

    Article  CAS  PubMed  Google Scholar 

  10. Baig N, Saleh TA (2018) Electrodes modified with 3D graphene composites: a review on methods for preparation, properties and sensing applications. Mikrochim Acta 185(6):283. https://doi.org/10.1007/s00604-018-2809-3

    Article  CAS  PubMed  Google Scholar 

  11. Xu Y, Sheng K, Li C, Shi G (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4:4324–4330. https://doi.org/10.1021/nn101187z

    Article  CAS  PubMed  Google Scholar 

  12. Xiong R, Grant AM, Ma R, Zhang S, Tsukruk VV (2018) Naturally-derived biopolymer nanocomposites: interfacial design, properties and emerging applications. Mat Sci Eng R 125:1–41. https://doi.org/10.1016/j.mser.2018.01.002

    Article  Google Scholar 

  13. Chen K, Xue D, Komarneni S (2017) Nanoclay assisted electrochemical exfoliation of pencil core to high conductive graphene thin-film electrode. J Colloid Interf Sci 487:156–161. https://doi.org/10.1016/j.jcis.2016.10.028

    Article  CAS  Google Scholar 

  14. Xiong R, Kim HS, Zhang L, Korolovych VF, Zhang S, Yingling YG, Tsukruk VV (2018) Wrapping nanocellulose nets around graphene oxide sheets. Angew Chem 130:8644–8649. https://doi.org/10.1002/anie.201803076

    Article  CAS  Google Scholar 

  15. Mihaela B, Alexandra RA, Adriana BI, Adriana B, Ioan S, Constantin M, Alexandru CA (2017) Voltammetric determination of dihydroxybenzene isomers using a disposable pencil graphite electrode modified with cobalt-phthalocyanine. Microchim Acta 184:1481–1488. https://doi.org/10.1007/s00604-017-2153-z

    Article  CAS  Google Scholar 

  16. Rezaei B, Boroujeni MK, Ensafi AA (2015) Fabrication of DNA, o-phenylenediamine, and gold nanoparticle bioimprinted polymer electrochemical sensor for the determination of dopamine. Biosens Bioelectron 66:490–496. https://doi.org/10.1016/j.bios.2014.12.009

    Article  CAS  PubMed  Google Scholar 

  17. Gürsu H, Gençten M, Şahin Y (2017) One-step electrochemical preparation of graphene-coated pencil graphite electrodes by cyclic voltammetry and their application in vanadium redox batteries. Electrochim Acta 243:239–249. https://doi.org/10.1016/j.electacta.2017.05.065

    Article  CAS  Google Scholar 

  18. Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L (2006) Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Lett 7(2):238–242. https://doi.org/10.1021/nl061702a

    Article  CAS  Google Scholar 

  19. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401. https://doi.org/10.1103/PhysRevLett.97.187401

    Article  CAS  PubMed  Google Scholar 

  20. Yang S, Bruller S, Wu Z-s, Liu Z, Parvez K, Dong R, Richard F, Samori P, Feng X, Mullen K (2015) Organic radical-assisted electrochemical exfoliation for the scalable production of high-quality graphene. J Am Chem Soc 137(43):13927–13932. https://doi.org/10.1021/jacs.5b09000

    Article  CAS  PubMed  Google Scholar 

  21. Huang X, Li S, Qi Z, Zhang W, Ye W, Fang Y (2015) Low defect concentration few-layer graphene using a two-step electrochemical exfoliation. Nanotechnology 26(10):105602. https://doi.org/10.1088/0957-4484/26/10/105602

    Article  CAS  PubMed  Google Scholar 

  22. Numan A, Shahid MM, Omar FS, Ramesh K, Ramesh S (2017) Facile fabrication of cobalt oxide nanograin-decorated reduced graphene oxide composite as ultrasensitive platform for dopamine detection. Sensor and Actuat B-Chem 238:1043–1051. https://doi.org/10.1016/j.snb.2016.07.111

    Article  CAS  Google Scholar 

  23. Kumar Roy P, Ganguly A, Yang W-H, Wu C-T, Hwang J-S, Tai Y, Chen K-H, Chen L-C, Chattopadhyay S (2015) Edge promoted ultrasensitive electrochemical detection of organic bio-molecules on epitaxial graphene nanowalls. Biosens Bioelectron 70:137–144. https://doi.org/10.1016/j.bios.2015.03.027

    Article  CAS  PubMed  Google Scholar 

  24. Wang HH, Chen XJ, Li WT, Zhou WH, Guo XC, Kang WY, Kou DX, Zhou ZJ, Meng YN, Tian QW, Wu SX (2018) ZnO nanotubes supported molecularly imprinted polymers arrays as sensing materials for electrochemical detection of dopamine. Talanta 176:573–581. https://doi.org/10.1016/j.talanta.2017.08.083

    Article  CAS  PubMed  Google Scholar 

  25. Huang S, Song S, Yue H, Gao X, Wang B, Guo E (2018) ZnO nanosheet balls anchored onto graphene foam for electrochemical determination of dopamine in the presence of uric acid. Sensor Actuat B-Chem 277:381–387. https://doi.org/10.1016/j.snb.2018.09.040

    Article  CAS  Google Scholar 

  26. Mathew G, Dey P, Das R, Chowdhury SD, Paul Das M, Veluswamy P, Neppolian B, Das J (2018) Direct electrochemical reduction of hematite decorated graphene oxide (α-Fe2O3@erGO) nanocomposite for selective detection of Parkinson's disease biomarker. Biosens Bioelectron 115:53–60. https://doi.org/10.1016/j.bios.2018.05.024

    Article  CAS  PubMed  Google Scholar 

  27. Gonzalez-Dieguez N, Colina A, Lopez-Palacios J, Heras A (2012) Spectroelectrochemistry at screen-printed electrodes: determination of dopamine. Anal Chem 84(21):9146–9153. https://doi.org/10.1021/ac3018444

    Article  CAS  PubMed  Google Scholar 

  28. Anithaa AC, Asokan K, Sekar C (2017) Voltammetric determination of epinephrine and xanthine based on sodium dodecyl sulphate assisted tungsten trioxide nanoparticles. Electrochim Acta 237:44–53. https://doi.org/10.1016/j.electacta.2017.03.098

    Article  CAS  Google Scholar 

  29. Qi S, Zhao B, Tang H, Jiang X (2015) Determination of ascorbic acid, dopamine, and uric acid by a novel electrochemical sensor based on pristine graphene. Electrochim Acta 161:395–402. https://doi.org/10.1016/j.electacta.2015.02.116

    Article  CAS  Google Scholar 

  30. Gao D, Li M, Li H, Li C, Zhu N, Yang B (2016) Sensitive detection of biomolecules and DNA bases based on graphene nanosheets. J Solid State Electr 21(3):813–821. https://doi.org/10.1007/s10008-016-3423-0

    Article  CAS  Google Scholar 

  31. Wang Y, Huang Y, Wang B, Fang T, Chen J, Liang C (2016) Three-dimensional porous graphene for simultaneous detection of dopamine and uric acid in the presence of ascorbic acid. J Electroanal Chem 782:76–83. https://doi.org/10.1016/j.jelechem.2016.09.050

    Article  CAS  Google Scholar 

  32. Yang Z, Liu X, Zheng X, Zheng J (2018) Synthesis of au@Pt nanoflowers supported on graphene oxide for enhanced electrochemical sensing of dopamine. J Electroanal Chem 817:48–54. https://doi.org/10.1016/j.jelechem.2018.03.062

    Article  CAS  Google Scholar 

  33. Feng X, Zhang Y, Zhou J, Li Y, Chen S, Zhang L, Ma Y, Wang L, Yan X (2015) Three-dimensional nitrogen-doped graphene as an ultrasensitive electrochemical sensor for the detection of dopamine. Nanoscale 7(6):2427–2432. https://doi.org/10.1039/c4nr06623e

    Article  CAS  PubMed  Google Scholar 

  34. Basiri S, Mehdinia A, Jabbari A (2018) Green synthesis of reduced graphene oxide-ag nanoparticles as a dual-responsive colorimetric platform for detection of dopamine and Cu2+. Sensor Actuat B-Chem 262:499–507. https://doi.org/10.1016/j.snb.2018.02.011

    Article  CAS  Google Scholar 

  35. Devaramani S, Sreeramareddygari M, Reddy MR, Thippeswamy R (2017) Covalently anchored p-aminobenzene sulfonate multilayer on a graphite pencil lead electrode: a highly selective electrochemical sensor for dopamine. Electroanal 29(5):1410–1417. https://doi.org/10.1002/elan.201600627

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21176102, 21176215, 21476136, 21171035), the Science and Technology Commission of Shanghai Municipality (No. 15430501200), the Sino-German Center for Research Promotion (No. GZ935), and the Innovation Program of Shanghai Municipal Education Commission (No. 14ZZ160).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijuan Zhang or Jie Lu.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Xu, Y., Sheng, T. et al. Amperometric sensor for dopamine based on surface-graphenization pencil graphite electrode prepared by in-situ electrochemical delamination. Microchim Acta 186, 324 (2019). https://doi.org/10.1007/s00604-019-3430-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3430-9

Keywords

Navigation