Skip to main content
Log in

A gold/Fe3O4 nanocomposite for use in a surface plasmon resonance immunosensor for carbendazim

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A surface plasmon resonance (SPR) biosensor for the pesticide carbendazim is described that has enhanced performance due to the use of a Au/Fe3O4 nanocomposite as an amplifying label on the surface the carboxymethyldextran-coated gold layer of the sensor. The surface was further modified with monoclonal antibody to obtain a sensor for real-time detection of carbendazim. Binding of carbendazim results in a change in refractive index. SPR detection in the absence of Au/Fe3O4 nanocomposite and by UPLC-MS analysis demonstrated the improved performance to be due to the use of the Au/Fe3O4 nanocomposite. Response is linear in the 0.05 to 150 ng·mL−1 carbendazim concentration range, and the limit of detection is 0.44 ng·mL−1. This is more than 1 order of magnitude lower than that of the conventional SPR assay. The recoveries from spiked medlar are between 102.4 and 115.0%. The selectivity was tested by using the pesticides benzimidazole, 2-mercaptobenzimidazole, 2-benzimidazole propionic acid, and 2-(2-aminoethyl) benzimidazole as potential interferents. Conceivably, this Au/Fe3O4 nanocomposite-based method has a large potential for the detection of other small analytes at trace concentrations.

Schematic presentation of the SPR sensor for the detection of the fungicide carbendazim (methyl 2-benzimidazole carbamate; MBC) based on the use of a gold/Fe3O4 nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Singh S, Singh N, Kumar V, Datta S, Wani AB, Singh D, Singh K, Singh J (2016) Toxicity, monitoring and biodegradation of the fungicide carbendazim. Environ Chem Lett 14:317–329

    Article  CAS  Google Scholar 

  2. Cui R, Xu D, Xie X, Yi Y, Quan Y, Zhou M, Gong J, Han Z, Zhang G (2017) Phosphorus-doped helical carbon nanofibers as enhanced sensing platform for electrochemical detection of carbendazim. Food Chem 221:457–463

    Article  CAS  Google Scholar 

  3. Xu X, Chen J, Li B, Tang L (2018) Carbendazim residues in vegetables in China between 2014 and 2016 and a chronic carbendazim exposure risk assessment. Food Control 91:20–25

    Article  CAS  Google Scholar 

  4. Zhou J, Xiong K, Yang Y, Ye X, Liu J, Li F (2015) Deleterious effects of benomyl and carbendazim on human placental trophoblast cells. Reprod Toxicol 51:64–71

    Article  CAS  Google Scholar 

  5. Mohapatra S, S L (2016) Residue level and dissipation of carbendazim in/on pomegranate fruits and soil. Environ Monit Assess 188:406

    Article  Google Scholar 

  6. Chayata H, Lassalle Y, Nicol E, Manolikakes S, Souissi Y, Bourcier S, Gosmini C, Bouchonnet S (2016) Characterization of the ultraviolet-visible photoproducts of thiophanate-methyl using high performance liquid chromatography coupled with high resolution tandem mass spectrometry-detection in grapes and tomatoes. J Chromatogr A 1441:75–82

    Article  CAS  Google Scholar 

  7. China's Ministry of Agriculture (MOV). Reply to the carbendazim matter. Available at: http://www.chinapesticide.gov.cn/zwdt4xw/5786.jhtml. Accessed 15 Jul 2017

  8. Gilbert-Lopez B, Garcia-Reyes JF, Ortega-Barrales P, Molina-Diaz A, Fernandez-Alba AR (2007) Analyses of pesticide residues in fruit-based baby food by liquid chromatography/electrospray ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom : RCM 21:2059–2071

    Article  CAS  Google Scholar 

  9. Yang Y, Huo D, Wu H, Wang X, Yang J, Bian M, Ma Y, Hou C (2018) N, P-doped carbon quantum dots as a fluorescent sensing platform for carbendazim detection based on fluorescence resonance energy transfer. Sensors Actuators B Chem 274:296–303

    Article  CAS  Google Scholar 

  10. Li S, Wu X, Zhang Q, Li P (2016) Synergetic dual recognition and separation of the fungicide carbendazim by using magnetic nanoparticles carrying a molecularly imprinted polymer and immobilized β-cyclodextrin. Microchim Acta 183:1433–1439

    Article  CAS  Google Scholar 

  11. Eissa S, Zourob M (2017) Selection and characterization of DNA aptamers for electrochemical biosensing of Carbendazim. Anal Chem 89:3138–3145

    Article  CAS  Google Scholar 

  12. Zhang P, Chen YP, Wang W, Shen Y, Guo JS (2016) Surface plasmon resonance for water pollutant detection and water process analysis. TrAC-Trends Anal Chem 85:153–165

    Article  CAS  Google Scholar 

  13. Daems D, Lu J, Delport F, Marien N, Orbie L, Aernouts B, Adriaens I, Huybrechts T, Saeys W, Spasic D, Lammertyn J (2017) Competitive inhibition assay for the detection of progesterone in dairy milk using a fiber optic SPR biosensor. Anal Chim Acta 950:1–6

    Article  CAS  Google Scholar 

  14. Masson JF (2017) Surface Plasmon resonance clinical biosensors for medical diagnostics. ACS Sensors 2:16–30

    Article  CAS  Google Scholar 

  15. Genslein C, Hausler P, Kirchner EM, Bierl R, Baeumner AJ, Hirsch T (2016) Graphene-enhanced plasmonic nanohole arrays for environmental sensing in aqueous samples. Beilstein J Nanotechnol 7:1564–1573

    Article  CAS  Google Scholar 

  16. Xia YQ, Su RX, Huang RL, Ding L, Wang LB, Qi W, He ZM (2017) Design of elution strategy for simultaneous detection of chloramphenicol and gentamicin in complex samples using surface plasmon resonance. Biosens Bioelectron 92:266–272

    Article  CAS  Google Scholar 

  17. Liu X, Li L, Liu YQ, Shi XB, Li WJ, Yang Y, Mao LG (2014) Ultrasensitive detection of deltamethrin by immune magnetic nanoparticles separation coupled with surface plasmon resonance sensor. Biosens Bioelectron 59:328–334

    Article  CAS  Google Scholar 

  18. Wu Q, Li S, Sun Y, Wang J (2017) Hollow gold nanoparticle-enhanced SPR based sandwich immunoassay for human cardiac troponin I. Microchim Acta 184:2395–2402

    Article  CAS  Google Scholar 

  19. Rastegarzadeh S, Hashemi F (2014) A surface plasmon resonance sensing method for determining captopril based on in situ formation of silver nanoparticles using ascorbic acid. Spectrochim Acta A Mol Biomol Spectrosc 122:536–541

    Article  CAS  Google Scholar 

  20. Wu Q, Sun Y, Zhang D, Li S, Zhang Y, Ma P, Yu Y, Wang X, Song D (2017) Ultrasensitive magnetic field-assisted surface plasmon resonance immunoassay for human cardiac troponin I. Biosens Bioelectron 96:288–293

    Article  CAS  Google Scholar 

  21. Luckarift HR, Balasubramanian S, Paliwal S, Johnson GR, Simonian AL (2007) Enzyme-encapsulated silica monolayers for rapid functionalization of a gold surface. Colloids Surf B: Biointerfaces 58:28–33

    Article  CAS  Google Scholar 

  22. Lin K, Yonghua L, Chen J, Zheng R, Wang P, Ming H (2008) Surface plasmon resonancehydrogen sensor based on metallic grating with high sensitivity. Opt Express 16:18599–18604

    Article  CAS  Google Scholar 

  23. Zeng S, Baillargeat D, Ho H-P, Yong K-T (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 43:3426–3452

    Article  CAS  Google Scholar 

  24. Yuan H, Ji W, Chu S, Qian S, Wang F, Masson JF, Han X, Peng W (2018) Fiber-optic surface plasmon resonance glucose sensor enhanced with phenylboronic acid modified au nanoparticles. Biosens Bioelectron 117:637–643

    Article  CAS  Google Scholar 

  25. Hang L, Zhou F, Men D, Li H, Li X, Zhang H, Liu G, Cai W, Li C, Li Y (2017) Functionalized periodic au@MOFs nanoparticle arrays as biosensors for dual-channel detection through the complementary effect of SPR and diffraction peaks. Nano Res 10:2257–2270

    Article  CAS  Google Scholar 

  26. Lyon JL, Fleming DA, Stone MB, Schiffer P, Williams ME (2004) Synthesis of Fe oxide CoreAu Shell nanoparticles by iterative hydroxylamine. Nano Lett 4:719–723

    Article  CAS  Google Scholar 

  27. Zhao XL, Cai YQ, Wang T, Shi YL, Jiang GB (2008) Preparation of alkanethiolate-functionalized core-shell Fe3O4@au nanoparticles and its interaction with several typical target molecules. Anal Chem 80:9091–9096

    Article  CAS  Google Scholar 

  28. Wang J, Sun Y, Wang L, Zhu X, Zhang H, Song D (2010) Surface plasmon resonance biosensor based on Fe3O4/Au nanocomposites. Colloids Surf B: Biointerfaces 81:600–606

    Article  CAS  Google Scholar 

  29. Homola J (1997) On the sensitivity of surface plasmon resonance sensors with spectral interrogation. Sensors Actuators B Chem 41:207–211

    Article  CAS  Google Scholar 

  30. Zhang H, Sun Y, Wang J, Zhang J, Zhang H, Zhou H, Song D (2012) Preparation and application of novel nanocomposites of magnetic-au nanorod in SPR biosensor. Biosens Bioelectron 34:137–143

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 81703699, 81573595, and 81603398), CAMS Innovation Fund for Medical Sciences (No. 2016-I2M-1-012 and 2017-I2M-1-013), the Graduate Student Innovation Fund of Peking Union Medical College (No. 2017-1007-14), and National Science and Technology Major Project for ‘Significant New Drugs Development’ (2018ZX09721004-010). The authors acknowledge Beijing Inter-bio Tech CO., LTD for providing the surface plasmon resonance device.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meihua Yang.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 393 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Dou, X., Zhao, X. et al. A gold/Fe3O4 nanocomposite for use in a surface plasmon resonance immunosensor for carbendazim. Microchim Acta 186, 313 (2019). https://doi.org/10.1007/s00604-019-3402-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3402-0

Keywords

Navigation