Skip to main content
Log in

Broad-spectrum electrochemical immunosensor based on one-step electrodeposition of AuNP–Abs and Prussian blue nanocomposite for organophosphorus pesticide detection

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Broad-spectrum antibodies can effectively recognize substances with similar structures and have broad application prospects in field rapid detection. In this study, broad-spectrum antibodies (Abs) against organophosphorus pesticides (OPs) were used as sensitive recognition elements, which could effectively recognize most OPs. Gold nanoparticles (AuNPs) have good biocompatibility. It combined with Abs to form a gold-labeled probe (AuNPs–Abs), which enhances the effective binding of antibodies to nanomaterials. Prussian blue (PB) was added to electrodeposition solution to enhance the conductivity, resulting in superior electrochemical performance. The AuNP–Abs–PB composite film was prepared by electrodeposition on the electrode surface to improve the anti-interference ability and stability of the immunosensor. Under the optimal experimental conditions, the immunosensor had a wide detection range (IC20–IC80: 1.82 × 10–3–3.29 × 104 ng/mL) and high sensitivity. Most importantly, it was simple to be prepared and could be used to detect multiple OPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3 
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen Z, Xu Y, Li N, Qian Y, Wang Z, Liu Y (2019) A national-scale cumulative exposure assessment of organophosphorus pesticides through dietary vegetable consumption in China. Food Control 104:34–41

    CAS  Google Scholar 

  2. Li Y-F, Sun Y-M, Beier RC, Lei H-T, Gee S, Hammock BD, Wang H, Wang Z, Sun X, Shen Y-D, Yang J-Y, Xu Z-L (2017) Immunochemical techniques for multianalyte analysis of chemical residues in food and the environment: a review. TrAC Trends Anal Chem 88:25–40

    CAS  Google Scholar 

  3. Zhao F, Yao Y, Jiang C, Shao Y, Barcelo D, Ying Y, Ping J (2020) Self-reduction bimetallic nanoparticles on ultrathin MXene nanosheets as functional platform for pesticide sensing. J Hazard Mater 384:121358

    CAS  PubMed  Google Scholar 

  4. Zhao F, He J, Li X, Bai Y, Ying Y, Ping J (2020) Smart plant-wearable biosensor for in-situ pesticide analysis. Biosens Bioelectron 170:112636

    CAS  PubMed  Google Scholar 

  5. Zhao F, Yao Y, Li X, Lan L, Jiang C, Ping J (2018) Metallic transition metal dichalcogenide nanosheets as an effective and biocompatible transducer for electrochemical detection of pesticide. Anal Chem 90:11658–11664

    CAS  PubMed  Google Scholar 

  6. Liu M, Khan A, Wang ZF, Liu Y, Yang GJ, Deng Y, He NY (2019) Aptasensors for pesticide detection. Biosens Bioelectron 130:174–184

    CAS  PubMed  Google Scholar 

  7. Pundir CS, Malik A, Preety, (2019) Bio-sensing of organophosphorus pesticides: a review. Biosens Bioelectron 140:111348

    CAS  PubMed  Google Scholar 

  8. Jiang X, Li D, Xu X, Ying Y, Li Y, Ye Z, Wang J (2008) Immunosensors for detection of pesticide residues. Biosens Bioelectron 23:1577–1587

    CAS  PubMed  Google Scholar 

  9. Raza N, Kim K-H (2018) Quantification techniques for important environmental contaminants in milk and dairy products. TrAC Trends Anal Chem 98:79–94

    CAS  Google Scholar 

  10. Talan A, Mishra A, Eremin SA, Narang J, Kumar A, Gandhi S (2018) Ultrasensitive electrochemical immuno-sensing platform based on gold nanoparticles triggering chlorpyrifos detection in fruits and vegetables. Biosens Bioelectron 105:14–21

    CAS  PubMed  Google Scholar 

  11. Gopinath SC, Tang TH, Citartan M, Chen Y, Lakshmipriya T (2014) Current aspects in immunosensors. Biosens Bioelectron 57:292–302

    CAS  PubMed  Google Scholar 

  12. Liu G, Guo W, Song D (2014) A multianalyte electrochemical immunosensor based on patterned carbon nanotubes modified substrates for detection of pesticides. Biosens Bioelectron 52:360–366

    CAS  PubMed  Google Scholar 

  13. Sanchis A, Salvador JP, Marco MP (2018) Multiplexed immunochemical techniques for the detection of pollutants in aquatic environments. TrAC Trends Anal Chem 106:1–10

    CAS  Google Scholar 

  14. Lan M, Guo Y, Zhao Y, Liu Y, Gui W, Zhu G (2016) Multi-residue detection of pesticides using a sensitive immunochip assay based on nanogold enhancement. Anal Chim Acta 938:146–155

    CAS  PubMed  Google Scholar 

  15. Shu Q, Wang L, Ouyang H, Wang W, Liu F, Fu Z (2017) Multiplexed immunochromatographic test strip for time-resolved chemiluminescent detection of pesticide residues using a bifunctional antibody. Biosens Bioelectron 87:908–914

    CAS  PubMed  Google Scholar 

  16. Arduini F, Cinti S, Caratelli V, Amendola L, Palleschi G, Moscone D (2019) Origami multiple paper-based electrochemical biosensors for pesticide detection. Biosens Bioelectron 126:346–354

    CAS  PubMed  Google Scholar 

  17. Zhang J, Fang X, Wu J, Hu Z, Jiang Y, Qi H, Zheng L, Xuan X (2020) An interdigitated microelectrode based aptasensor for real-time and ultratrace detection of four organophosphorus pesticides. Biosens Bioelectron 150:111879

    CAS  PubMed  Google Scholar 

  18. Xu ZL, Wang H, Shen YD, Nichkova M, Lei HT, Beier RC, Zheng WX, Yang JY, She ZG, Sun YM (2011) Conformational changes of hapten-protein conjugates resulting in improved broad-specificity and sensitivity of an ELISA for organophosphorus pesticides. Analyst 136:2512–2520

    CAS  PubMed  Google Scholar 

  19. Khanmohammadi A, Aghaie A, Vahedi E, Qazvini A, Ghanei M, Afkhami A, Hajian A, Bagheri H (2020) Electrochemical biosensors for the detection of lung cancer biomarkers: a review. Talanta 206:120251

    CAS  PubMed  Google Scholar 

  20. Zhou Q, Tang D (2020) Recent advances in photoelectrochemical biosensors for analysis of mycotoxins in food. TrAC Trends Anal Chem 124:115814

    CAS  Google Scholar 

  21. Haji-Hashemi H, Safarnejad MR, Norouzi P, Ebrahimi M, Shahmirzaie M, Ganjali MR (2019) Simple and effective label free electrochemical immunosensor for Fig mosaic virus detection. Anal Biochem 566:102–106

    CAS  PubMed  Google Scholar 

  22. Sun C, Liao X, Huang P, Shan G, Ma X, Fu L, Zhou L, Kong W (2020) A self-assembled electrochemical immunosensor for ultra-sensitive detection of ochratoxin A in medicinal and edible malt. Food Chem 315:126289

    CAS  PubMed  Google Scholar 

  23. Ma E, Wang P, Yang Q, Yu H, Pei F, Li Y, Liu Q, Dong Y (2019) Electrochemical immunosensor based on MoS2 NFs/Au@AgPt YNCs as signal amplification label for sensitive detection of CEA. Biosens Bioelectron 142:111580

    CAS  PubMed  Google Scholar 

  24. Viet NX, Hoan NX, Takamura Y (2019) Development of highly sensitive electrochemical immunosensor based on single-walled carbon nanotube modified screen-printed carbon electrode. Mater Chem Phys 227:123–129

    Google Scholar 

  25. Li K, Li X, Fan Y, Yang C, Lv X (2019) Simultaneous detection of gastric cancer screening biomarkers plasma pepsinogen I/II using fluorescent immunochromatographic strip coupled with a miniature analytical device. Sens Actuators B Chem 286:272–281

    CAS  Google Scholar 

  26. Huang L, Chen J, Yu Z, Tang D (2020) Self-powered temperature sensor with seebeck effect transduction for photothermal-thermoelectric coupled immunoassay. Anal Chem 92:2809–2814

    CAS  PubMed  Google Scholar 

  27. Pei X, Zhang B, Tang J, Liu B, Lai W, Tang D (2013) Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: a review. Anal Chim Acta 758:1–18

    CAS  PubMed  Google Scholar 

  28. Zhang K, Lv S, Lin Z, Tang D (2017) CdS: Mn quantum dot-functionalized g-C3N4 nanohybrids as signal-generation tags for photoelectrochemical immunoassay of prostate specific antigen coupling DNAzyme concatamer with enzymatic biocatalytic precipitation. Biosens Bioelectron 95:34–40

    CAS  PubMed  Google Scholar 

  29. Zhang K, Lv S, Lin Z, Li M, Tang D (2018) Bio-bar-code-based photoelectrochemical immunoassay for sensitive detection of prostate-specific antigen using rolling circle amplification and enzymatic biocatalytic precipitation. Biosens Bioelectron 101:159–166

    CAS  PubMed  Google Scholar 

  30. Zhang B, Liu B, Tang D, Niessner R, Chen G, Knopp D (2012) DNA-based hybridization chain reaction for amplified bioelectronic signal and ultrasensitive detection of proteins. Anal Chem 84:5392–5399

    CAS  PubMed  Google Scholar 

  31. Yu Z, Tang Y, Cai G, Ren R, Tang D (2019) Paper electrode-based flexible pressure sensor for point-of-care immunoassay with digital multimeter. Anal Chem 91:1222–1226

    CAS  PubMed  Google Scholar 

  32. Puertas S, de Gracia VM, Mendoza E, Jimenez-Jorquera C, de la Fuente JM, Fernandez-Sanchez C, Grazu V (2013) Improving immunosensor performance through oriented immobilization of antibodies on carbon nanotube composite surfaces. Biosens Bioelectron 43:274–280

    CAS  PubMed  Google Scholar 

  33. Lah Z, Ahmad SAA, Zaini MS, Kamarudin MA (2019) An electrochemical sandwich immunosensor for the detection of HER2 using antibody-conjugated PbS quantum dot as a label. J Pharm Biomed Anal 174:608–617

    CAS  PubMed  Google Scholar 

  34. Gao Z, Xu M, Hou L, Chen G, Tang D (2013) Magnetic bead-based reverse colorimetric immunoassay strategy for sensing biomolecules. Anal Chem 85:6945–6952

    CAS  PubMed  Google Scholar 

  35. Jampasa S, Lae-Ngee P, Patarakul K, Ngamrojanavanich N, Chailapakul O, Rodthongkum N (2019) Electrochemical immunosensor based on gold-labeled monoclonal anti-LipL32 for leptospirosis diagnosis. Biosens Bioelectron 142:111539

    CAS  PubMed  Google Scholar 

  36. Chen H, Yang T, Liu F, Li W (2019) Electrodeposition of gold nanoparticles on Cu-based metal-organic framework for the electrochemical detection of nitrite. Sens Actuators B Chem 286:401–407

    CAS  Google Scholar 

  37. Dou X, Chu X, Kong W, Luo J, Yang M (2015) A gold-based nanobeacon probe for fluorescence sensing of organophosphorus pesticides. Anal Chim Acta 891:291–297

    CAS  PubMed  Google Scholar 

  38. Makaraviciute A, Ramanaviciene A (2013) Site-directed antibody immobilization techniques for immunosensors. Biosens Bioelectron 50:460–471

    CAS  PubMed  Google Scholar 

  39. Perez-Fernandez B, Mercader JV, Abad-Fuentes A, Checa-Orrego BI, Costa-Garcia A, Escosura-Muniz A (2020) Direct competitive immunosensor for Imidacloprid pesticide detection on gold nanoparticle-modified electrodes. Talanta 209:120465

    CAS  PubMed  Google Scholar 

  40. Samadi Pakchin P, Fathi M, Ghanbari H, Saber R, Omidi Y (2020) A novel electrochemical immunosensor for ultrasensitive detection of CA125 in ovarian cancer. Biosens Bioelectron 153:112029

    CAS  PubMed  Google Scholar 

  41. Husmann S, Orth ES, Zarbin AJG (2019) A multi-technique approach towards the mechanistic investigation of the electrodeposition of Prussian blue over carbon nanotubes film. Electrochim Acta 312:380–391

    CAS  Google Scholar 

  42. Haji-Hashemi H, Habibi MM, Safarnejad MR, Norouzi P, Ganjali MR (2018) Label-free electrochemical immunosensor based on electrodeposited Prussian blue and gold nanoparticles for sensitive detection of citrus bacterial canker disease. Sens Actuators B Chem 275:61–68

    CAS  Google Scholar 

  43. Fu J, An X, Yao Y, Guo Y, Sun X (2019) Electrochemical aptasensor based on one step co-electrodeposition of aptamer and GO-CuNPs nanocomposite for organophosphorus pesticide detection. Sens Actuators B Chem 287:503–509

    CAS  Google Scholar 

  44. Ping J, Mao X, Fan K, Li D, Ru S, Wu J, Ying Y (2010) A Prussian blue-based amperometric sensor for the determination of hydrogen peroxide residues in milk. Ionics 16:523–527

    CAS  Google Scholar 

  45. Ping J, Wu J, Fan K, Ying Y (2011) An amperometric sensor based on Prussian blue and poly(o-phenylenediamine) modified glassy carbon electrode for the determination of hydrogen peroxide in beverages. Food Chem 126:2005–2009

    CAS  PubMed  Google Scholar 

  46. Shaikh MO, Zhu PY, Wang CC, Du YC, Chuang CH (2019) Electrochemical immunosensor utilizing electrodeposited Au nanocrystals and dielectrophoretically trapped PS/Ag/ab-HSA nanoprobes for detection of microalbuminuria at point of care. Biosens Bioelectron 126:572–580

    CAS  PubMed  Google Scholar 

  47. Yao Y, Wang G, Chu G, An X, Guo Y, Sun X (2019) The development of a novel biosensor based on gold nanocages/graphene oxide–chitosan modified acetylcholinesterase for organophosphorus pesticide detection. New J Chem 43:13816–13826

    CAS  Google Scholar 

  48. Tian X, Liu L, Li Y, Yang C, Zhou Z, Nie Y, Wang Y (2018) Nonenzymatic electrochemical sensor based on CuO–TiO2 for sensitive and selective detection of methyl parathion pesticide in ground water. Sens Actuators B Chem 256:135–142

    CAS  Google Scholar 

  49. Mahmoudi E, Fakhri H, Hajian A, Afkhami A, Bagheri H (2019) High-performance electrochemical enzyme sensor for organophosphate pesticide detection using modified metal-organic framework sensing platforms. Bioelectrochemistry 130:107348

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31772068), Special Project of Independent Innovation of Shandong Province (2018CXGC0214), Shandong Provincial Natural Science Foundation (ZR2018ZC0126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yemin Guo.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Zhao, Q., Li, J. et al. Broad-spectrum electrochemical immunosensor based on one-step electrodeposition of AuNP–Abs and Prussian blue nanocomposite for organophosphorus pesticide detection. Bioprocess Biosyst Eng 44, 585–594 (2021). https://doi.org/10.1007/s00449-020-02472-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02472-9

Keywords

Navigation