Skip to main content
Log in

Electrochemical immunosensing using a nanostructured functional platform for determination of α-zearalanol

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe an electrochemical immunosensor for the determination of the growth promoter α-zearalanol in bovine serum. The sensing scheme is based on a nanocomposite consisting of gold nanoparticles electrodeposited on multi-walled carbon nanotubes that were modified with poly (vinylpyridine) through in-situ polymerization. The electrodeposition of the gold nanoparticles enlarges the surface available for immobilization of antibodies against α-zearalanol. The nanocomposite film was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, and cyclic voltammetry. The calibration plot has a linear response in the concentrations range from 0.05 to 50 ng mL−1, and the detection limit is 16 pg mL−1. The time required for analysis is 12 min only which compares quite favorably with the time (90 min) required by the conventional ELISA. The method exhibits good selectivity, stability and reproducibility for detecting α-zearalanol in the livestock production.

Schematic representation of the immunocapture procedure and subsequent determination of α-zearalanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bartelt-Hunt SL, Snow DD, Kranz WL, Mader TL, Shapiro CA, Van Donk SJ, Shelton DP, Tarkalson DD, Zhang TC (2012) Effect of growth promotants on the occurrence of endogenous and synthetic steroid hormones on feedlot soils and in runoff from beef cattle feeding operations. Environ Sci Technol 46:1352–1360

    Article  CAS  Google Scholar 

  2. Wang YK, Yan YX, Mao ZW, Ha W, Zou Q, Hao QW, Ji WH, Sun JH (2013) Highly sensitive electrochemical immunoassay for zearalenone in grain and grain-based food. Microchim Acta 180:187–193

    Article  CAS  Google Scholar 

  3. Blokland MH, Sterk SS, Stephany RW, Launay FM, Kennedy DG, Van Ginkel LA (2006) Determination of resorcylic acid lactones in biological samples by GC–MS. Discrimination between illegal use and contamination with fusarium toxins. Anal Bioanal Chem 384:1221–1227

    Article  CAS  Google Scholar 

  4. Valenzuela-Grijalva NV, González-Rios H, Islava TY, Valenzuela M, Torrescano G, Camou JP, Núñez-González FA (2012) Changes in intramuscular fat, fatty acid profile and cholesterol content induced by zeranol implantation strategy in hair lambs. J Sci Food Agric 92:1362–1367

    Article  CAS  Google Scholar 

  5. Matraszek-Zuchowska I, Wozniak B, Zmudzki J (2013) Determination of zeranol, taleranol, zearalanone, α-zearalenol, β-zearalenol and zearalenone in urine by LC-MS/MS. Food Addit Contam Part A-Chem 30:987–994

    Article  CAS  Google Scholar 

  6. Roy JR, Chakraborty S, Chakraborty TR (2009) Estrogen-like endocrine disrupting chemicals affecting puberty in humans–A review. Med Sci Monitor 15:137–145

    Google Scholar 

  7. Council Directive 88/146/EEC (1988) Off J Eur Commun 70:16–18

    Google Scholar 

  8. Sánchez Arribas A, Bermejo E, Zapardiel A, Téllez H, Rodríguez-Flores J, Zougagh M, Ríos Á, Chicharro M (2009) Screening and confirmatory methods for the analysis of macrocyclic lactone mycotoxins by CE with amperometric detection. Electrophoresis 30:499–506

    Article  Google Scholar 

  9. Han H, Kim B, Lee SG, Kim J (2013) An optimised method for the accurate determination of zeranol and diethylstilbestrol in animal tissues using isotope dilution-liquid chromatography/mass spectrometry. Food Chem 140:44–51

    Article  CAS  Google Scholar 

  10. De Baere S, Osselaere A, Devreese M, Vanhaecke L, De Backer P, Croubels S (2012) Development of a liquid–chromatography tandem mass spectrometry and ultra-high-performance liquid chromatography high-resolution mass spectrometry method for the quantitative determination of zearalenone and its major metabolites in chicken and pig plasma. Anal Chim Acta 756:37–48

    Article  Google Scholar 

  11. Impens S, Van Loco J, Degroodt JM, De Brabander H (2007) A downscaled multi-residue strategy for detection of anabolic steroids in bovine urine using gas chromatography tandem mass spectrometry (GC–MS3). Anal Chim Acta 586:43–48

    Article  CAS  Google Scholar 

  12. Välimaa AL, Kivistö AT, Leskinen PI, Karp MT (2010) A novel biosensor for the detection of zearalenone family mycotoxins in milk. J Microbiol Methods 80:44–48

    Article  Google Scholar 

  13. Zhu J, Tao X, Ding S, Shen J, Wang Z, Wang Y, Xu F, Wu X, Hu T, Zhu A, Jiang H (2012) Micro-plate chemiluminescence enzyme immunoassay for determination of zeranol in bovine milk and urine. Anal Lett 45:2538–2548

    Article  CAS  Google Scholar 

  14. Feng R, Zhang Y, Yu H, Wu D, Ma H, Zhu B, Xu C, Li H, Du B, Wei Q (2013) Nanoporous PtCo-based ultrasensitive enzyme-free immunosensor for Zeranol detection. Biosens Bioelectron 42:367–372

    Article  CAS  Google Scholar 

  15. Feng R, Zhang Y, Li H, Wu D, Xin X, Zhang S, Yu H, Wei Q, Du B (2013) Ultrasensitive electrochemical immunosensor for zeranol detection based on signal amplification strategy of nanoporous gold films and nano-montmorillonite as labels. Anal Chim Acta 758:72–79

    Article  CAS  Google Scholar 

  16. Xue X, Wei D, Feng R, Wang H, Wei Q, Du B (2013) Label-free electrochemical immunosensors for the detection of zeranol using graphene sheets and nickel hexacyanoferrate nanocomposites. Anal Methods 5:4159–4164

    Article  CAS  Google Scholar 

  17. Taleat Z, Khoshroo A, Mazloum-Ardakani M (2008–2013) Screen-printed electrodes for biosensing: a review. Microchim Acta

  18. Ijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  19. Pompeo F, Resasco DE (2002) Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine. Nano Lett 4:369–373

    Article  Google Scholar 

  20. Shamsipur M, Najafi M, Hosseini MRM (2010) Highly improved electrooxidation of glucose at a nickel (II) oxide/multi-walled carbon nanotube modified glassy carbon electrode. Biogeosciences 77:120–124

    CAS  Google Scholar 

  21. Qin S, Qin D, Ford WT, Resasco DE, Herrera JE (2004) Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods. Macromolecules 37:752–757

    Article  CAS  Google Scholar 

  22. Silva CCeC, Breitkreitz MC, Santhiago M, Crispilho Corrêa C, Tatsuo Kubota L (2012) Construction of a new functional platform by grafting poly (4-vinylpyridine) in multi-walled carbon nanotubes for complexing copper ions aiming the amperometric detection of l-cysteine. Electrochim Acta 71:150–158

    Article  Google Scholar 

  23. Banerjee S, Benny TH, Wong SS (2005) Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater 17:17–29

    Article  CAS  Google Scholar 

  24. Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867

    Article  CAS  Google Scholar 

  25. Wang J (2012) Electrochemical biosensing based on noble metal nanoparticles. Microchim Acta 177:245–270

    Article  CAS  Google Scholar 

  26. Pereira SV, Bertolino FA, Messina GA, Raba J (2011) Microfluidic immunosensor with gold nanoparticle platform for the determination of immunoglobulin G anti-Echinococcus granulosus antibodies. Anal Biochem 409:98–104

    Article  CAS  Google Scholar 

  27. Cai X, Gao X, Wang L, Wu Q, Lin X (2013) A layer-by-layer assembled and carbon nanotubes/gold nanoparticles-based bienzyme biosensor for cholesterol detection. Sens Actuator B-Chem 181:575–583

    Article  CAS  Google Scholar 

  28. Batra B, Pundir CS (2013) An amperometric glutamate biosensor based on immobilization of glutamate oxidase onto carboxylated multiwalled carbon nanotubes/ gold nanoparticles/chitosan composite film modified Au electrode. Biosens Bioelectron 47:496–501

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the financial support from Universidad Nacional de San Luis (UNSL), Instituto de Química de San Luis (INQUISAL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Franco A. Bertolino or Julio Raba.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regiart, M., Seia, M.A., Messina, G.A. et al. Electrochemical immunosensing using a nanostructured functional platform for determination of α-zearalanol. Microchim Acta 182, 531–538 (2015). https://doi.org/10.1007/s00604-014-1355-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1355-x

Keywords

Navigation