Skip to main content
Log in

Simultaneous voltammetric sensing of levodopa, piroxicam, ofloxacin and methocarbamol using a carbon paste electrode modified with graphite oxide and β-cyclodextrin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A carbon paste electrode (CPE) was modified with graphite oxide (GrO) and β-cyclodextrin (CD) to obtain a sensor for simultaneous voltammetric determination of levodopa (LD), piroxicam (PRX), ofloxacin (OFX) and methocarbamol (MCB). The morphology, structure and electrochemical properties of the functionalized GrO were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, contact angle measurements and cyclic voltammetry. Under the optimal experimental conditions, the sensor is capable of detecting LD, PRX, OFX and MCB by square wave voltammetry (SWV) at working potentials of +0.40, +0.60, +1.03 and + 1.27 V (versus Ag/AgCl), respectively. Response is linear from 1.0 to 20 μM for LD, from 1.0 to 15 μM for PRX, from 1.0 to 20 μM for OFX, and from 1.0 to 50 μM for MCB. The respective limits of detection are 65, 105, 89 and 400 nM. The method was successfully applied to the simultaneous determination of LD, PRX, OFX and MCB in (spiked) real river water and synthetic urine samples, and the results were in agreement with those obtained using a spectrophotometric method, with recoveries close to 100%.

Schematic presentation of a novel electroanalytical method employing a carbon paste electrode modified with graphite oxide and β-cyclodextrin for the simultaneous determination of levodopa, piroxicam, ofloxacin and methocarbamol in urine and river water samples by square wave voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kurbanoglu S, Ozkan SA (2018) Electrochemical carbon based nanosensors: a promising tool in pharmaceutical and biomedical analysis. J Pharm Biomed Anal 147:439–457

    Article  CAS  Google Scholar 

  2. Vicentini FC, Figueiredo-Filho LCS, Janegitz BC, Santiago A, Pereira-Filho ER, Fatibello-Filho O (2011) Factorial design and response surface: Voltammetric method optimization for the determination of Ag(I) employing a carbon nanotubes paste electrode. Quim Nova 34:825–830

    CAS  Google Scholar 

  3. Lamani SD, Teradale AB, Unki SN, Nandibewoor ST (2016) Electrochemical oxidation and determination of methocarbamol at multi-walled carbon nanotubes-modified glassy carbon electrode. Anal Bioanal Electrochem 8:304–317

    CAS  Google Scholar 

  4. Yue HY, Zhang H, Huang S, Lin XY, Gao X, Chang J, Yao LH, Guo EJ (2017) Synthesis of ZnO nanowire arrays/3D graphene foam and application for determination of levodopa in the presence of uric acid. Biosens Bioelectron 89:592–597

    Article  CAS  Google Scholar 

  5. Movlaee K, Beitollahi H, Ganjali MR, Norouzi P (2017) Electrochemical platform for simultaneous determination of levodopa, acetaminophen and tyrosine using a graphene and ferrocene modified carbon paste electrode. Microchim Acta 184:3281–3289

    Article  CAS  Google Scholar 

  6. Martín A, Hernández-Ferrer J, Martínez MT, Escarpa A (2015) Graphene nanoribbon-based electrochemical sensors on screen-printed platforms. Electrochim Acta 172:2–6

    Article  Google Scholar 

  7. Gao X, Yue H, Song S, Huang S, Li B, Lin X, Guo E, Wang B, Guan E, Zhang H, Wu P (2018) 3-dimensional hollow graphene balls for voltammetric sensing of levodopa in the presence of uric acid. Microchim Acta 185:91

    Article  Google Scholar 

  8. Shahrokhian S, Jokar E, Ghalkhani M (2010) Electrochemical determination of piroxicam on the surface of pyrolytic graphite electrode modified with a film of carbon nanoparticle-chitosan. Microchim Acta 170:141–146

    Article  CAS  Google Scholar 

  9. Sinha A, Dhanjai JR, Zhao H, Karolia P, Jadon N (2018) Voltammetric sensing based on the use of advanced carbonaceous nanomaterials: a review. Microchim Acta 185:89

    Article  Google Scholar 

  10. Simioni NB, Oliveira GG, Vicentini FC, Lanza MRV, Janegitz BC, Fatibello-Filho O (2017) Nanodiamonds stabilized in dihexadecyl phosphate film for electrochemical study and quantification of codeine in biological and pharmaceutical samples. Diam Relat Mater 74:191–196

    Article  CAS  Google Scholar 

  11. Yang N, Foord JS, Jiang X (2016) Diamond electrochemistry at the nanoscale: a review. Carbon 99:90–110

    Article  CAS  Google Scholar 

  12. Sun G, Wang X, Chen P (2015) Microfiber devices based on carbon materials. Mater Today 18:215–226

    Article  CAS  Google Scholar 

  13. Kausar A (2017) Advances in polymer/fullerene nanocomposite: a review on essential features and applications. Polym Plast Technol Eng 57:594–605

    Article  Google Scholar 

  14. Ibáñez-Redín G, Silva TA, Vicentini FC, Fatibello-Filho O (2018) Effect of carbon black functionalization on the analytical performance of a tyrosinase biosensor based on glassy carbon electrode modified with dihexadecylphosphate film. Enzym Microb Technol 116:41–47

    Article  Google Scholar 

  15. Song J, Yang J, Zeng J, Tan J, Zhang L (2011) Graphite oxide film-modified electrode as an electrochemical sensor for acetaminophen. Sensors Actuators B Chem 155:220–225

    Article  CAS  Google Scholar 

  16. Merkoçi A (2006) Carbon nanotubes in analytical sciences. Microchim Acta 152:157–174

    Article  Google Scholar 

  17. Wong A, Silva Tiago A, Fatibello-Filho O (2017) Graphite oxide and gold nanoparticles as alternative materials in the design of a highly sensitive electrochemical sensor for the simultaneous determination of biological species. Electroanalysis 29:2491–2497

    Article  CAS  Google Scholar 

  18. Prabakar SJR, Kim Y, Jeong J, Jeong S, Lah MS, Pyo M (2016) Graphite oxide as an efficient and robust support for Pt nanoparticles in electrocatalytic methanol oxidation. Electrochim Acta 188:472–479

    Article  CAS  Google Scholar 

  19. Gao L, He J, Xu W, Zhang J, Hui J, Guo Y, Li W, Yu C (2014) Ultrasensitive electrochemical biosensor based on graphite oxide, Prussian blue, and PTC-NH2 for the detection of α2,6-sialylated glycans in human serum. Biosens Bioelectron 62:79–83

    Article  CAS  Google Scholar 

  20. Liu J, Chen Y, Guo Y, Yang F, Cheng F (2013) Electrochemical sensor for o-nitrophenol based on β-cyclodextrin functionalized graphene nanosheets. J Nanomater 2013:1–6

    Google Scholar 

  21. Gholivand MB, Malekzadeh G, Derakhshan AA (2014) Boehmite nanoparticle modified carbon paste electrode for determination of piroxicam. Sensors Actuators B Chem 201:378–386

    Article  CAS  Google Scholar 

  22. Zhang F, Gu S, Ding Y, Li L, Liu X (2013) Simultaneous determination of ofloxacin and gatifloxacin on cysteic acid modified electrode in the presence of sodium dodecyl benzene sulfonate. Bioelectrochemistry 89:42–49

    Article  CAS  Google Scholar 

  23. Wong A, Silva TA, Vicentini FC, Fatibello-Filho O (2016) Electrochemical sensor based on graphene oxide and ionic liquid for ofloxacin determination at nanomolar levels. Talanta 161:333–341

    Article  CAS  Google Scholar 

  24. El-Din MS, Eid M, Zeid AM (2015) Simultaneous determination of methocarbamol and aspirin binary mixture in their combined tablets by derivative and ratio derivative spectrophotometry. Anal Methods 7:5674–5681

    Article  CAS  Google Scholar 

  25. Atta NF, Elkholy SS, Ahmed YM, Galal A (2016) Host guest inclusion complex modified electrode for the sensitive determination of a muscle relaxant drug. J Electrochem Soc 163:B403–B409

    Article  CAS  Google Scholar 

  26. Abrams WB, Coutinho CB, Leon AS, Spiegel HE (1971) Absorption and metabolism of levodopa. JAMA 218:1912–1914

    Article  CAS  Google Scholar 

  27. Ishizaki T, Nomura T, Abe T (1979) Pharmacokinetics of piroxicam, a new nonsteroidal anti-inflammatory agent, under fasting and postprandial states in man. J Pharmacokinet Biopharm 7:369–381

    Article  CAS  Google Scholar 

  28. Borrmann L, Tang-Liu DDS, Kann J, Nista J, Lin ET, Frank J (1992) Ofloxacin in human serum, urine, and tear film after topical application. Cornea 11(3):226–230

    Article  CAS  Google Scholar 

  29. Bruce RB, Turnbull LB, Newman JH (1971) Metabolism of methocarbamol in the rat, dog, and human. J Pharm Sci 60:104–106

    Article  CAS  Google Scholar 

  30. Laube N, Mohr B, Hesse A (2001) Laser-probe-based investigation of the evolution of particle size distributions of calcium oxalate particles formed in artificial urines. J Cryst Growth 233:367–374

    Article  CAS  Google Scholar 

  31. Nicholson RS (1965) Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal Chem 37:1351–1355

    Article  CAS  Google Scholar 

  32. Lavagnini I, Antiochia R, Magno F (2004) An extended method for the practical evaluation of the standard rate constant from cyclic voltammetric data. Electroanalysis 16:505–506

    Article  CAS  Google Scholar 

  33. Joanna L (2017) Cyclodextrins based electrochemical sensors for biomedical and pharmaceutical analysis. Curr Med Chem 24:2359–2391

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support granted by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Proc. 160150/2015-9, Proc. 405546/2018-1 and Proc. 408430/2016-8. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Campanhã Vicentini.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, A.M., Wong, A., Vicentini, F.C. et al. Simultaneous voltammetric sensing of levodopa, piroxicam, ofloxacin and methocarbamol using a carbon paste electrode modified with graphite oxide and β-cyclodextrin. Microchim Acta 186, 174 (2019). https://doi.org/10.1007/s00604-019-3296-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3296-x

Keywords

Navigation