Skip to main content
Log in

Colorimetric human papillomavirus DNA assay based on the retardation of avidin-induced aggregation of gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A colorimetric assay for human papillomavirus (HPV) DNA was developed based on the retardation of the avidin-induced aggregation of gold nanoparticles (AuNPs) by HPV DNA. Positively charged avidin acts as a coagulant for AuNP aggregation. In the presence of the target DNA, however, the aggregation of AuNPs is retarded owing to electrosteric stabilization as a result of the hybridization of the target and probe DNA. In the absence of HPV DNA, the stabilization effect caused by the biotinylated probe DNA is weak, resulting in NP aggregation and a color change from red to purple. Aggregation may be easily observed with bare eyes or spectrophotometrically at about 560 nm. The visual detection limit is 1 nM. The assay was used for the determination of HPV DNA after polymerase chain reaction (PCR) amplification without any further purification.

Schematic presentation of the avidin-induced aggregation of unmodified gold nanoparticles (AuNPs) which leads to a color change from red to purple. In the presence of dsDNA, however, the aggregation is remarkably retarded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhao W, Chiuman W, Lam JCF, McManus SA, Chen W, Cui Y, Pelton R, Brook MA, Li Y (2008) DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors. J Am Chem Soc 130(11):3610–3618

    Article  CAS  PubMed  Google Scholar 

  2. Aili D, Enander K, Rydberg J, Lundström I, Baltzer L, Liedberg B (2006) Aggregation-induced folding of a De novo designed polypeptide immobilized on gold nanoparticles. J Am Chem Soc 128(7):2194–2195

    Article  CAS  PubMed  Google Scholar 

  3. Liu P, Yang X, Sun S, Wang Q, Wang K, Huang J, Liu J, He L (2013) Enzyme-free colorimetric detection of DNA by using gold nanoparticles and hybridization chain reaction amplification. Anal Chem 85(16):7689–7695

    Article  CAS  PubMed  Google Scholar 

  4. Deng H, Xu Y, Liu Y, Che Z, Guo H, Shan S, Sun Y, Liu X, Huang K, Ma X, Wu Y, Liang XJ (2012) Gold nanoparticles with asymmetric polymerase chain reaction for colorimetric detection of DNA sequence. Anal Chem 84(3):1253–1258

    Article  CAS  PubMed  Google Scholar 

  5. Xie X, Xu W, Liu X (2012) Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification. Acc Chem Res 45(9):1511–1520

    Article  CAS  PubMed  Google Scholar 

  6. Liu J, Lu Y (2006) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Ed 45(1):90–94

    Article  CAS  Google Scholar 

  7. Liu R, Liew R, Zhou J, Xing B (2007) A simple and specific assay for real-time colorimetric visualization of β-lactamase activity by using gold nanoparticles. Angew Chem Int Ed 46(46):8799–8803

    Article  CAS  Google Scholar 

  8. Tan YN, Su X, Zhu Y, Lee JY (2010) Sensing of transcription factor through controlled-assembly of metal nanoparticles modified with segmented DNA elements. ACS Nano 4(9):5101–5110

    Article  CAS  PubMed  Google Scholar 

  9. Xia F, Zuo X, Yang R, Xiao Y, Kang D, Valléebélisle A, Gong X, Yuen JD, Hsu BB, Heeger AJ (2010) Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Natl Acad Sci U S A 107(24):10837–10841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thiramanas R, Laocharoensuk R (2016) Competitive binding of polyethyleneimine-coated gold nanoparticles to enzymes and bacteria: a key mechanism for low-level colorimetric detection of gram-positive and gram-negative bacteria. Microchim Acta 183(1):389–396

    Article  CAS  Google Scholar 

  11. Yang YC, Tseng WL (2016) 1,4-Benzenediboronic-acid-induced aggregation of gold nanoparticles: application to hydrogen peroxide detection and biotin–Avidin-mediated immunoassay with naked-eye detection. Anal Chem 88(10):5355–5362

    Article  CAS  PubMed  Google Scholar 

  12. Dan W, Tao G, Lin L, Yang D, Mao X, Li G (2016) Colorimetric detection of proteins based on target-induced activation of aptazyme. Anal Chim Acta 942:68–73

    Article  Google Scholar 

  13. Li H, Rothberg LJ (2004) Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J Am Chem Soc 126(35):10958–10961

    Article  CAS  PubMed  Google Scholar 

  14. Li H, Rothberg LJ (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci U S A 101:14036–14039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Su X, Kanjanawarut R (2009) Control of metal nanoparticles aggregation and dispersion by PNA and PNA−DNA complexes, and its application for colorimetric DNA detection. ACS Nano 3(9):2751–2759

    Article  CAS  PubMed  Google Scholar 

  16. Kanjanawarut R, Su X (2009) Colorimetric detection of DNA using unmodified metallic nanoparticles and peptide nucleic acid probes. Anal Chem 81(15):6122–6129

    Article  CAS  PubMed  Google Scholar 

  17. Wang Z, Lévy R, Fernig DG, Brust M (2006) Kinase-catalyzed modification of gold nanoparticles: a new approach to colorimetric kinase activity screening. J Am Chem Soc 128(7):2214–2215

    Article  CAS  PubMed  Google Scholar 

  18. Hofmann K, Kiso Y (1976) An approach to the targeted attachment of peptides and proteins to solid supports. Proc Natl Acad Sci U S A 73(10):3516–3518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guesdon JL, Ternynck T, Avrameas S, Guesdon JL, Ternyck J, Avrameas S (1979) The use of avidin-biotin interaction in immunoenzymatic techniques. J Histochem Cytochem 27(8):1131–1139

    Article  CAS  PubMed  Google Scholar 

  20. Foldvari M (2012) HPV infections: can they be eradicated using nanotechnology? Nanomed- Nanotechnol 8(2):131–135

    Article  CAS  Google Scholar 

  21. Peyton CL, Schiffman M, Lörincz AT, Hunt WC, Mielzynska I, Bratti C, Eaton S, Hildesheim A, Morera LA, Rodriguez AC (1998) Comparison of PCR- and hybrid capture-based human papillomavirus detection systems using multiple cervical specimen collection strategies. J Clin Microbiol 36(11):3248–3254

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sandri MT, Lentati P, Benini E, Dell'Orto P, Zorzino L, Carozzi FM, Maisonneuve P, Passerini R, Salvatici M, Casadio C (2006) Comparison of the Digene HC2 assay and the Roche AMPLICOR human papillomavirus (HPV) test for detection of high-risk HPV genotypes in cervical samples. J Clin Microbiol 44(6):2141–2146

    Article  PubMed  PubMed Central  Google Scholar 

  23. FBosch FX, Sanjosé SD (2002) Human papillomavirus in cervical cancer. Curr Oncol Rep 4(2):175–184

    Article  Google Scholar 

  24. Piao JY, Park EH, Choi K, Quan B, Kang DH, Park PY, Kim DS, Chung DS (2009) Direct visual detection of DNA based on the light scattering of silica nanoparticles on a human papillomavirus DNA chip. Talanta 80(2):967–973

    Article  CAS  PubMed  Google Scholar 

  25. Wang Q, Yang X, Yang X, Wang K, Zhang H, Liu P (2015) An enzyme-free colorimetric assay using hybridization chain reaction amplification and split aptamers. Analyst 140(22):7657–7662

    Article  CAS  PubMed  Google Scholar 

  26. Gopinath SC, Lakshmipriya T, Awazu K (2014) Colorimetric detection of controlled assembly and disassembly of aptamers on unmodified gold nanoparticles. Biosens Bioelectron 51(3):115–123

    Article  CAS  PubMed  Google Scholar 

  27. Farkhari N, Abbasian S, Moshaii A, Nikkhah M (2016) Mechanism of adsorption of single and double stranded DNA on goldand silver nanoparticles: investigating some important parameters inbio-sensing applications. Colloid Surface B 148:657–664

    Article  CAS  Google Scholar 

  28. Liu Z, Hettihewa M, Shu Y, Zhou C, Wan Q, Liu L (2018) The mechanism of the adsorption of dsDNA on citrate-stabilized gold nanoparticles and a colorimetric and visual method for detecting the V600E point mutation of the BRAF gene. Microchim Acta 185(4):240–247

    Article  Google Scholar 

  29. Zhao W, Brook MA, Li Y (2008) Design of gold nanoparticle-based colorimetric biosensing assays. Chembiochem 9(15):2363–2371

    Article  CAS  PubMed  Google Scholar 

  30. Piao JY, Chung DS (2012) Novel colorimetric assay of LSD1 activity using gold nanoparticles. Analyst 137(11):2669–2673

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (NSFC No. 21065013 and 21165019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Wu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 550 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piao, J., Zhou, X. & Wu, X. Colorimetric human papillomavirus DNA assay based on the retardation of avidin-induced aggregation of gold nanoparticles. Microchim Acta 185, 537 (2018). https://doi.org/10.1007/s00604-018-3065-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3065-2

Keywords

Navigation