Skip to main content
Log in

Photothermal biosensor for HPV16 based on strand-displacement amplification and gold nanoparticles using a thermometer as readout

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Gold nanoparticles (AuNPs) in aggregated state have a strong near infrared region (NIR) absorption and the causes a much stronger photothermal effect than that of the dispersed AuNPs. Strand-displacement amplification (SDA) can produce large amount of single-stranded DNA (ssDNA), which in turn effectively prevent AuNPs from aggregation. In this study, these characteristics had been applied to design a photothermal biosensor for human papilloma virus (HPV and HPV16 were chosen as model target) detection. In the absence of HPV16, AuNPs was in the aggregated state and large temperature rise can be detected after the irradiation by 808 nm laser. The presence of HPV16 triggers the SDA reaction with the help of Bst DNA polymerase and Nt.BstNBI nicking endonuclease resulting in the production of large amounts of ssDNA; this protects unmodified AuNPs from salt-induced aggregation. Therefore, AuNPs was in a dispersed state and the temperature change was not significant after the irradiation of 808 nm laser. The difference of the temperature changing can be applied for the quantitative detection of HPV16 using a thermometer as readout. The linear response range is 1.0 fM ~ 50 pM with a detection limit of 0.3 fM. The proposed method has been applied to detect HPV16 in clinical cervical sample and is competent for clinical analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tao Y, Wang W, Fu C, Luo F, Guo L, Qiu B, Lin Z (2020) Sensitive biosensor for p53 DNA sequence based on the photothermal effect of gold nanoparticles and the signal amplification of locked nucleic acid functionalized DNA walkers using a thermometer as readout. Talanta 220:121398. https://doi.org/10.1016/j.talanta.2020.121398

    Article  CAS  PubMed  Google Scholar 

  2. Tao Y, Lin Y, Luo F, Fu C, Lin C, He Y, Cai Z, Qiu B, Lin Z (2021) Convenient detection of h2s based on the photothermal effect of Au@Ag nanocubes using a handheld thermometer as readout. Anal Chim Acta 1149:338211. https://doi.org/10.1016/j.aca.2021.338211

    Article  CAS  PubMed  Google Scholar 

  3. Zhang J, Xing H, Lu Y (2018) Translating molecular detections into a simple temperature test using a target-responsive smart thermometer. Chem Sci 9(16):3906–3910. https://doi.org/10.1039/C7SC05325H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhou W, Sun J, Li X (2020) Low-cost quantitative photothermal genetic detection of pathogens on a paper hybrid device using a thermometer. Anal Chem 92(21):14830–14837. https://doi.org/10.1021/acs.analchem.0c03700

    Article  CAS  PubMed  Google Scholar 

  5. Chen H, Shao L, Ming T, Sun Z, Zhao C, Yang B, Wang J (2010) Understanding the photothermal conversion efficiency of gold nanocrystals. Small 6(20):2272–2280. https://doi.org/10.1002/smll.201001109

    Article  CAS  PubMed  Google Scholar 

  6. Shi D, Sheng F, Zhang X, Wang G (2018) Gold nanoparticle aggregation: colorimetric detection of the interactions between avidin and biotin. Talanta 185:106–112. https://doi.org/10.1016/j.talanta.2018.02.102

    Article  CAS  PubMed  Google Scholar 

  7. Jiang Y, Shi M, Liu Y, Wan S, Cui C, Zhang L, Tan W (2017) Aptamer/AuNP biosensor for colorimetric profiling of exosomal proteins. Angew Chem Int Ed Engl 56(39):11916–11920. https://doi.org/10.1002/anie.201703807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cheng X, Sun R, Yin L, Chai Z, Shi H, Gao M (2017) Light-triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo. Adv Mater 29(6):1604894. https://doi.org/10.1002/adma.201604894

    Article  CAS  Google Scholar 

  9. Vankayala R, Hwang KC (2018) Near-infrared-light-activatable nanomaterial-mediated phototheranostic nanomedicines: an emerging paradigm for cancer treatment. Adv Mater 30(23):1706320. https://doi.org/10.1002/adma.201706320

    Article  CAS  Google Scholar 

  10. Aldewachi H, Chalati T, Woodroofe MN, Bricklebank N, Sharrack B, Gardiner P (2018) Gold nanoparticle-based colorimetric biosensors. Nanoscale 10(1):18–33. https://doi.org/10.1039/C7NR06367A

    Article  CAS  Google Scholar 

  11. Shahdordizadeh M, Yazdian-Robati R, Ansari N, Ramezani M, Abnous K, Taghdisi SM (2018) An aptamer-based colorimetric lead(ii) assay based on the use of gold nanoparticles modified with dsDNA and exonuclease I. Microchim Acta 185(2):151. https://doi.org/10.1007/s00604-018-2699-4

    Article  CAS  Google Scholar 

  12. Zhang J, Wang L, Pan D, Song S, Boey FYC, Zhang H, Fan C (2008) Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small 4(8):1196–1200. https://doi.org/10.1002/smll.200800057

    Article  CAS  PubMed  Google Scholar 

  13. Tao Y, Luo F, Guo L, Qiu B, Lin Z (2020) Target-triggered aggregation of gold nanoparticles for photothermal quantitative detection of adenosine using a thermometer as readout. Anal Chim Acta 1110:151–157. https://doi.org/10.1016/j.aca.2020.03.023

    Article  CAS  PubMed  Google Scholar 

  14. Zhou W, Hu K, Kwee S, Tang L, Wang Z, Xia J, Li X (2020) Gold nanoparticle aggregation-induced quantitative photothermal biosensing using a thermometer: a simple and universal biosensing platform. Anal Chem 92(3):2739–2747. https://doi.org/10.1021/acs.analchem.9b04996

    Article  CAS  PubMed  Google Scholar 

  15. Miao P, Tang Y (2020) Dumbbell hybridization chain reaction based electrochemical biosensor for ultrasensitive detection of exosomal miRNA. Anal Chem 92(17):12026–12032. https://doi.org/10.1021/acs.analchem.0c02654

    Article  CAS  PubMed  Google Scholar 

  16. Guo Q, Yu Y, Zhang H, Cai C, Shen Q (2020) Electrochemical sensing of exosomal microRNA based on hybridization chain reaction signal amplification with reduced false-positive signals. Anal Chem 92(7):5302–5310. https://doi.org/10.1021/acs.analchem.9b05849

    Article  CAS  PubMed  Google Scholar 

  17. Chen H-L, Guo M-M, Tang H, Wu Z, Tang L-J, Yu R-Q, Jiang J-H (2015) Nucleic acid amplification-based methods for microRNA detection. Anal Methods 7(6):2258–2263. https://doi.org/10.1039/C4AY02938K

    Article  CAS  Google Scholar 

  18. Chen A, Gui G-F, Zhuo Y, Chai Y-Q, Xiang Y, Yuan R (2015) Signal-off electrochemiluminescence biosensor based on phi29 DNA polymerase mediated strand displacement amplification for microRNA detection. Anal Chem 87(12):6328–6334. https://doi.org/10.1021/acs.analchem.5b01168

    Article  CAS  PubMed  Google Scholar 

  19. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  20. Steenbergen RDM, Snijders PJF, Heideman DAM, Meijer CJLM (2014) Clinical implications of (epi)genetic changes in HPV-induced cervical precancerous lesions. Nat Rev Cancer 14(6):395–405. https://doi.org/10.1038/nrc3728

    Article  CAS  PubMed  Google Scholar 

  21. Walboomers JMM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJF, Peto J, Meijer CJLM, Muñoz N (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189(1):12–19. https://doi.org/10.1002/(SICI)1096-9896(199909)189:1%3c12::AID-PATH431%3e3.0.CO;2-F

    Article  CAS  PubMed  Google Scholar 

  22. Rodriguez NM, Wong WS, Liu L, Dewar R, Klapperich CM (2016) A fully integrated paperfluidic molecular diagnostic chip for the extraction, amplification, and detection of nucleic acids from clinical samples. Lab Chip 16(4):753–763. https://doi.org/10.1039/C5LC01392E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao X, Wu Q, Wang X, Fu Y, Zhang X, Tian X, Cheng B, Lu B, Yu X, Lan S, Lu W, Ma D, Cheng X, Xie X (2018) The performance of human papillomavirus DNA detection with type 16/18 genotyping by hybrid capture in primary test of cervical cancer screening: a cross-sectional study in 10,669 Chinese women. Clin Microbiol Infect 24(12):1322–1327. https://doi.org/10.1016/j.cmi.2018.02.027

    Article  CAS  PubMed  Google Scholar 

  24. Wang CC, Palefsky JM (2016) Human papillomavirus-related oropharyngeal cancer in the HIV-infected population. Oral Dis 22(S1):98–106. https://doi.org/10.1111/odi.12365

    Article  PubMed  Google Scholar 

  25. Zamani M, Robson JM, Fan A, Bono MS, Furst AL, Klapperich CM (2021) Electrochemical strategy for low-cost viral detection. ACS Cent Sci 7(6):963–972. https://doi.org/10.1021/acscentsci.1c00186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Beerens E, Van Renterghem L, Praet M, Sturtewagen Y, Weyers S, Temmerman M, Depypere H, Claeys P, Cuvelier CA (2005) Human papillomavirus DNA detection in women with primary abnormal cytology of the cervix: prevalence and distribution of HPV genotypes. Cytopathology 16(4):199–205. https://doi.org/10.1111/j.1365-2303.2005.00266.x

    Article  CAS  PubMed  Google Scholar 

  27. Weichert W, Schewe C, Denkert C, Morawietz L, Dietel M, Petersen I (2009) Molecular hpv typing as a diagnostic tool to discriminate primary from metastatic squamous cell carcinoma of the lung. The American Journal of Surgical Pathology 33 (4)

  28. Avelino KYPS, Oliveira LS, Lucena-Silva N, Andrade CAS, Oliveira MDL (2021) Flexible sensor based on conducting polymer and gold nanoparticles for electrochemical screening of hpv families in cervical specimens. Talanta 226:122118. https://doi.org/10.1016/j.talanta.2021.122118

    Article  CAS  PubMed  Google Scholar 

  29. Civit L, Fragoso A, O’Sullivan CK (2010) Electrochemical biosensor for the multiplexed detection of human papillomavirus genes. Biosens Bioelectron 26(4):1684–1687. https://doi.org/10.1016/j.bios.2010.06.072

    Article  CAS  PubMed  Google Scholar 

  30. Civit L, Fragoso A, Hölters S, Dürst M, O’Sullivan CK (2012) Electrochemical genosensor array for the simultaneous detection of multiple high-risk human papillomavirus sequences in clinical samples. Anal Chim Acta 715:93–98. https://doi.org/10.1016/j.aca.2011.12.009

    Article  CAS  PubMed  Google Scholar 

  31. Lu Y, Rong X, Wu P, Shou J, Chen L, Luo F, Lin C, Wang J, Qiu B, Lin Z (2022) Sensitive electrochemiluminescence biosensor based on the target trigger difference of the electrostatic interaction between an ecl reporter and the electrode surface. Anal Chem 94(15):5823–5829. https://doi.org/10.1021/acs.analchem.1c05258

    Article  CAS  PubMed  Google Scholar 

  32. Hong G, Zou Z, Huang Z, Deng H, Chen W, Peng H (2021) Split-type electrochemiluminescent gene assay platform based on gold nanocluster probe for human papillomavirus diagnosis. Biosens Bioelectron 178:113044. https://doi.org/10.1016/j.bios.2021.113044

    Article  CAS  PubMed  Google Scholar 

  33. Nie Y, Zhang X, Zhang Q, Liang Z, Ma Q, Su X (2020) A novel high efficient electrochemiluminescence sensor based on reductive cu(i) particles catalyzed zn-doped mos2 qds for hpv 16 DNA determination. Biosens Bioelectron 160:112217. https://doi.org/10.1016/j.bios.2020.112217

    Article  CAS  PubMed  Google Scholar 

  34. He Y, Liu Y, Cheng L, Yang Y, Qiu B, Guo L, Wang Y, Lin Z, Hong G (2021) Highly reproducible and sensitive electrochemiluminescence biosensors for hpv detection based on bovine serum albumin carrier platforms and hyperbranched rolling circle amplification. ACS Appl Mater Interfaces 13(1):298–305. https://doi.org/10.1021/acsami.0c20742

    Article  CAS  PubMed  Google Scholar 

  35. He Y, Cheng L, Yang Y, Chen P, Qiu B, Guo L, Wang Y, Lin Z, Hong G (2020) Label-free homogeneous electrochemical biosensor for hpv DNA based on entropy-driven target recycling and hyperbranched rolling circle amplification. Sens Actuators, B Chem 320:128407. https://doi.org/10.1016/j.snb.2020.128407

    Article  CAS  Google Scholar 

Download references

Funding

This project was supported by the National Sciences Foundation of China (21904020, 21974020), Health Science and Technology Project of Zhejiang Province (2022KY887).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. B.Y., M.L., and Z.L. conceived the projects, and B.Y., M.L., F.L., X.J., and Z.L. designed and performed the experiments and collected the data. B.Y., M.L., F.L., X.J., B.Q., and Z.L. analyzed and discussed the data. All authors discussed the results and contributed to the writing of this manuscript. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to XiaoYa Jin or Zhenyu Lin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 583 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, B., Li, M., Luo, F. et al. Photothermal biosensor for HPV16 based on strand-displacement amplification and gold nanoparticles using a thermometer as readout. Microchim Acta 189, 437 (2022). https://doi.org/10.1007/s00604-022-05522-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05522-z

Keywords

Navigation