Skip to main content
Log in

Colorimetric and visual detection of mercury(II) based on the suppression of the interaction of dithiothreitol with agar-stabilized silver-coated gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A colorimetric and visual method is described for the determination of mercury(II) ion. A gel consisting of agar-stabilized silver-coated gold nanoparticles (Au@Ag NPs) was prepared. The reaction with dithiothreitol (DTT) via thiol-Ag chemistry results in an orange to purple color change of the gel. However, in the presence of Hg(II), the reaction of DTT with the silver shells is suppressed due to the strong thiophilicity of Hg(II). The color of the gel changes from purple to red to orange in the presence of increasing concentrations of Hg(II). The Au@Ag NPs therefore are a viable optical probe for Hg(II) which can be detected in concentration as low as 78 nM via dual-wavelength ratiometric absorbance (A390/A520), and at 1 μM levels with bare eyes. The use of agar as a support is mandatory to prevent the aggregation of the NPs and also improves selectivity. The method was applied to the analysis of spiked samples, and recoveries ranged between 96.3 and 104%. The assay is easy, inexpensive, and in our perception represents an attractive tool for on-site visual detection of Hg(II).

Schematic of the assay. With increasing concentrations of Hg(II), the oxidative etching of silver shells caused by dithiothreitol (DTT) is gradually inhibited, and the color of agar-stabilized Au@Ag NP gel varies from purple to red, and finally to orange. This can be used for visual detection of Hg(II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tang L, Li J (2017) Plasmon-based colorimetric nanosensors for ultrasensitive molecular diagnostics. ACS Sensors 2:857–875

    Article  CAS  PubMed  Google Scholar 

  2. Han S, Zhou T, Yin B, He P (2018) Gold nanoparticle-based colorimetric ELISA for quantification of ractopamine. Microchim Acta 185:210–217

    Article  CAS  Google Scholar 

  3. Lalander CH, Zheng Y, Dhuey S, Cabrini S, Bach U (2010) DNA-directed self-assembly of gold nanoparticles onto nanopatterned surfaces: controlled placement of individual nanoparticles into regular arrays. ACS Nano 4:6153–6161

    Article  CAS  PubMed  Google Scholar 

  4. Lee H, Ro G, Kim JM, Kim Y (2017) Discrete-dipole approximation for the optical properties with morphological changes of silver nanoprism and nanosphere via galvanic reaction. Mater Lett 209:138–141

    Article  CAS  Google Scholar 

  5. Li XJ, Wang YS, Yang SY, Tang X, Liu L, Zhou B, Wang XF, Zhu YF, Huang YQ, He SZ (2016) Determination of metallothioneins based on the enhanced peroxidase-like activity of mercury-coated gold nanoparticles aggregated by metallothioneins. Microchim Acta 183:2123–2129

    Article  CAS  Google Scholar 

  6. Nossier AI, Abdelzaher H, Matboli M, Eissa S (2018) Dual approach for the colorimetric determination of unamplified microRNAs by using citrate capped gold nanoparticles. Microchim Acta 185:236–244

    Article  CAS  Google Scholar 

  7. Lin Y, Chen C, Wang C, Pu F, Ren J, Qu X (2011) Silver nanoprobe for sensitive and selective colorimetric detection of dopamine via robust Ag–catechol interaction. Chem Commun 47:1181–1183

    Article  CAS  Google Scholar 

  8. Zhan L, Yang T, Zhen SJ, Huang CZ (2017) Cytosine triphosphate-capped silver nanoparticles as a platform for visual and colorimetric determination of mercury(II) and chromium(III). Microchim Acta 184:3171–3178

    Article  CAS  Google Scholar 

  9. Wang GL, Zhu XY, Jiao HJ, Dong YM, Li ZJ (2012) Ultrasensitive and dual functional colorimetric sensors for mercury (II) ions and hydrogen peroxide based on catalytic reduction property of silver nanoparticles. Biosens Bioelectron 31:337–342

    Article  CAS  PubMed  Google Scholar 

  10. Lee S, Nam YS, Choi SH, Lee Y, Lee KB (2016) Highly sensitive photometric determination of cyanide based on selective etching of gold nanorods. Microchim Acta 183:3035–3041

    Article  CAS  Google Scholar 

  11. Chen N, Zhang Y, Liu H, Ruan H, Dong C, Shen Z, Wu A (2016) A supersensitive probe for rapid colorimetric detection of nickel ion based on a sensing mechanism of anti-etching. ACS Sustain Chem Eng 4:6509–6516

    Article  CAS  Google Scholar 

  12. Li L, Zhang L, Zhao Y, Chen Z (2018) Colorimetric detection of Hg(II) by measurement the color alterations from the “before” and “after” RGB images of etched triangular silver nanoplates. Microchim Acta 185:235–240

    Article  CAS  Google Scholar 

  13. Zhang Z, Chen Z, Wang S, Cheng F, Chen L (2015) Iodine-mediated etching of gold nanorods for plasmonic ELISA based on colorimetric detection of alkaline phosphatase. ACS Appl Mater Interfaces 7:27639–27645

    Article  CAS  PubMed  Google Scholar 

  14. Saa L, Coronado-Puchau M, Pavlov V, Liz-Marzán LM (2014) Enzymatic etching of gold nanorods by horseradish peroxidase and application to blood glucose detection. Nanoscale 6:7405–7409

    Article  CAS  PubMed  Google Scholar 

  15. Zhang X, Wang H, Su Z (2012) Fabrication of Au@ Ag core-shell nanoparticles using polyelectrolyte multilayers as nanoreactors. Langmuir 28:15705–15712

    Article  CAS  PubMed  Google Scholar 

  16. Chuntonov L, Bar-Sadan M, Houben L, Haran G (2011) Correlating electron tomography and plasmon spectroscopy of single noble metal core-shell nanoparticles. Nano Lett 12:145–150

    Article  CAS  PubMed  Google Scholar 

  17. Xu H, Zhang K, Liu Q, Liu Y, Xie M (2017) Visual and fluorescent detection of mercury ions by using a dually emissive ratiometric nanohybrid containing carbon dots and CdTe quantum dots. Microchim Acta 184:1199–1206

    Article  CAS  Google Scholar 

  18. Cho EC, Cobley CM, Rycenga M, Xia Y (2009) Fine tuning the optical properties of Au-Ag nanocages by selectively etching Ag with oxygen and a water-soluble thiol. J Mater Chem 19:6317–6320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Erxleben H, Ruzicka J (2005) Atomic absorption spectroscopy for mercury, automated by sequential injection and miniaturized in lab-on-valve system. Anal Chem 77:5124–5128

    Article  CAS  PubMed  Google Scholar 

  20. Marguí E, Kregsamer P, Hidalgo M, Tapias J, Queralt I, Streli C (2010) Analytical approaches for Hg determination in wastewater samples by means of total reflection X-ray fluorescence apectrometry. Talanta 82:821–827

    Article  CAS  PubMed  Google Scholar 

  21. Schramel P, Wendler I, Angerer J (1997) The determination of metals (antimony, bismuth, lead, cadmium, mercury, palladium, platinum, tellurium, thallium, tin and tungsten) in urine samples by inductively coupled plasma-mass spectrometry. Int Arch Occup Environ Health 69:219–223

    Article  CAS  PubMed  Google Scholar 

  22. Yang T, Yang H, Zhen SJ, Huang CZ (2015) Hydrogen-bond-mediated in situ fabrication of AgNPs/Agar/PAN electrospun nanofibers as reproducible SERS substrates. ACS Appl Mater Interfaces 7:1586–1594

    Article  CAS  PubMed  Google Scholar 

  23. Zhang L, Jin Y, Mao H, Zheng L, Zhao J, Peng Y, Du S, Zhang Z (2014) Structure-selective hot-spot Raman enhancement for direct identification and detection of trace penicilloic acid allergen in penicillin. Biosens Bioelectron 58:165–171

    Article  CAS  PubMed  Google Scholar 

  24. Khan FR, Kennaway GM, Croteau MN, Dybowska A, Smith BD, Nogueira A, Rainbow PS, Luoma SN, Valsami-Jones E (2014) In vivo retention of ingested Au NPs by Daphnia magna: no evidence for trans-epithelial alimentary uptake. Chemosphere 100:97–104

    Article  CAS  PubMed  Google Scholar 

  25. Cao W, Elsayed-Ali HE (2009) Stability of Ag nanoparticles fabricated by electron beam lithography. Mater Lett 63:2263–2266

    Article  CAS  Google Scholar 

  26. Andrieux-Ledier A, Tremblay B, Courty A (2013) Stability of self-ordered thiol-coated silver nanoparticles: oxidative environment effects. Langmuir 29:13140–13145

    Article  CAS  PubMed  Google Scholar 

  27. Li Y, Wang Q, Zhou X, Wen CY, Yu J, Han X, Li X, Yan ZF, Zeng J (2016) A convenient colorimetric method for sensitive and specific detection of cyanide using Ag@ Au core–shell nanoparticles. Sensor Actuators B Chem 228:366–372

    Article  CAS  Google Scholar 

  28. Kim YR, Mahajan RK, Kim JS, Kim H (2009) Highly sensitive gold nanoparticle-based colorimetric sensing of mercury (II) through simple ligand exchange reaction in aqueous media. ACS Appl Mater Interfaces 2:292–295

    Article  CAS  Google Scholar 

  29. Wang X, Yang T, Zhang X, Chen M, Wang J (2017) In situ growth of gold nanoparticles on Hg2+-binding M13 phages for mercury sensing. Nanoscale 9:16728–16734

  30. Li L, Zhang L, Zhao Y, Chen Z (2018) Colorimetric detection of Hg(II) by measurement the color alterations from the "before" and "after" RGB images of etched triangular silver nanoplates. Microchim Acta 185:235–240

  31. Alizadeh T, Hamidi N, Ganjali MR, Rafiei F (2018) Determination of subnanomolar levels of mercury (II) by using a graphite paste electrode modified with MWCNTs and Hg(II) -imprinted polymer nanoparticles. Microchim Acta 185:16–24

  32. Ravikumar A, Panneerselvam P, Radhakrishnan K (2018) Fluorometric determination of lead(II) and mercury(II) based on their interaction with a complex formed between graphene oxide and a DNAzyme. Microchim Acta 185:2–9

  33. Xu Y, Li H, Wang B, Liu H, Zhao L, Zhou T, Liu M, Huang N, Li Y, Ding L, Chen Y (2018) Microwave-assisted synthesis of carbon dots for "turn-on" fluorometric determination of Hg(II) via aggregation-induced emission. Microchim Acta 185:252–258

  34. Butwong N, Kunthadong P, Soisungnoen P, Chotichayapong C, Srijaranai S, Luong JHT (2018) Silver-doped CdS quantum dots incorporated into chitosan-coated cellulose as a colorimetric paper test stripe for mercury. Microchim Acta 185:126–134

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 21775073 and 61605084).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liying Zhang or Shuhu Du.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 793 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da, Q., Gu, Y., Peng, X. et al. Colorimetric and visual detection of mercury(II) based on the suppression of the interaction of dithiothreitol with agar-stabilized silver-coated gold nanoparticles. Microchim Acta 185, 357 (2018). https://doi.org/10.1007/s00604-018-2899-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2899-y

Keywords

Navigation