Skip to main content
Log in

Three-dimensional nanofiber scaffolds are superior to two-dimensional mats in micro-oriented extraction of chlorobenzenes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) polyamide scaffolds were fabricated by applying a solvent bath as the collecting element. Electrospun nanofibers were immersed into the solvent bath to give a material with a laminated 3D texture. In parallel, 2D nanofibers were synthesized and utilized as microextractive phases in a needle trap device to compare the capabilities of 2D and 3D materials in terms of headspace extraction of various chlorobenzenes (chlorobenzene, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 1,2,4-trichlorobenzene and 1,2,3,4-tetrachlorobenzene). The results demonstrate the superiority of 3D nanofibrous scaffolds over 2D mats. The porosity, morphology, and thermal stability of the 3D scaffolds were characterized using FT-IR, scanning electron microscopy, confocal laser scanning microscopy and thermogravimetric analysis. The CLSM images were reconstructed and analyzed by Image J software, and eventually the enhancement of porosity using 3D scaffolds was confirmed. The type of solvent bath, polyamide solution concentration and other parameters were optimized. Following thermal desorption of the chlorobenzenes, they were quantified by GC-MS. Under optimum conditions, the calibration plots cover the 0.004–1.0 pg μL−1 concentration range and the limits of detection are in the range from 0.8–3 pg mL−1. The relative standard deviations (RSDs) are between 3 and 8% and 3–10% (n = 3) at spiking levels of 200 and 1000 ng L−1, respectively. The RSDs for the needle-to-needle repeatability are <15% (for n = 3). This needle trap microextraction method was applied to the analysis of river water, sea water, and of inlet water of a water treatment plant.

Schematic diagram symbolizing the extractive effectiveness of sponge-like 3D nanofibrous scaffolds with respect to smooth 2D electrospun nanofibers. Under the same experimental conditions, higher porosity of 3D scaffolds is amazingly contributed to the more accessible adsorptive sites which in turn makes them drastic and innovative candidate for micro–oriented extraction purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sarafraz-Yazdi A, Rounaghi G, Vatani H, Razavipanah I, Amiri A (2015) Headspace solid phase microextraction of volatile aromatic hydrocarbons using a steel wire coated with an electrochemically prepared nanocomposite consisting of polypyrrole, carbon nanotubes, and titanium oxide. Microchim Acta 182:217–225. https://doi.org/10.1007/s00604-014-1320-8

    Article  CAS  Google Scholar 

  2. do Carmo SN, Merib J, Dias AN, Stolberg J, Budziak D, Carasek E (2017) A low-cost biosorbent-based coating for the highly sensitive determination of organochlorine pesticides by solid-phase microextraction and gas chromatography-electron capture detection. J Chromatogr A 1525:23–31. https://doi.org/10.1016/j.chroma.2017.10.018

    Article  CAS  PubMed  Google Scholar 

  3. Najafabadi ME, Bagheri H (2018) Wireless electrochemical preparation of gradient nanoclusters consisting of copper (II), stearic acid and montmorillonite on a copper wire for headspace in-tube microextraction of chlorobenzenes. Microchim Acta 185:80. https://doi.org/10.1007/s00604-017-2549-9

    Article  CAS  Google Scholar 

  4. Hashemi B, Zohrabi P, Kim K-H, Shamsipur M, Deep A, Hong J (2017) Recent advances in liquid-phase microextraction techniques for the analysis of environmental pollutants. TrAC Trends Anal Chem 97:83–95. https://doi.org/10.1016/j.trac.2017.08.014

    Article  CAS  Google Scholar 

  5. Zhang X, Zang XH, Wang JT, Wang C, Wu QH, Wang Z (2015) Porous carbon derived from aluminum-based metal organic framework as a fiber coating for the solid-phase microextraction of polycyclic aromatic hydrocarbons from water and soil. Microchim Acta 182:2353–2359. https://doi.org/10.1007/s00604-015-1566-9

    Article  CAS  Google Scholar 

  6. Aziz-Zanjani MO, Mehdinia A (2014) A review on procedures for the preparation of coatings for solid phase microextraction. Microchim Acta 181:1169–1190. https://doi.org/10.1007/s00604-014-1265-y

    Article  CAS  Google Scholar 

  7. Baktash MY, Bagheri H (2017) A superhydrophobic silica aerogel with high surface area for needle trap microextraction of chlorobenzenes. Microchim Acta 184:2151–2156. https://doi.org/10.1007/s00604-017-2212-5

    Article  CAS  Google Scholar 

  8. Vidal L, Ahmadi M, Fernández E, Madrakian T, Canals A (2017) Magnetic headspace adsorptive extraction of chlorobenzenes prior to thermal desorption gas chromatography-mass spectrometry. Anal Chim Acta 971:40–47. https://doi.org/10.1016/j.aca.2017.04.002

    Article  CAS  PubMed  Google Scholar 

  9. Lord HL, Zhan W, Pawliszyn J (2010) Fundamentals and applications of needle trap devices: a critical review. Anal Chim Acta 677:3–18. https://doi.org/10.1016/j.aca.2010.06.020

    Article  CAS  PubMed  Google Scholar 

  10. Bagheri H, Zeinali S, Baktash MY (2017) A single–step synthesized supehydrophobic melamine formaldehyde foam for trace determination of volatile organic pollutants. J Chromatogr A 1552:10–16. https://doi.org/10.1016/j.chroma.2017.10.012.

    Article  Google Scholar 

  11. Heidari M, Attari SG, Rafieiemam M (2016) Application of solid phase microextraction and needle trap device with silica composite of carbon nanotubes for determination of perchloroethylene in laboratory and field. Anal Chim Acta 918:43–49. https://doi.org/10.1016/j.aca.2016.03.009

    Article  CAS  PubMed  Google Scholar 

  12. Lee X, Huang D, Lou D, Pawliszyn J (2012) Needle trap extraction for GC analysis of formic and acetic acids in aqueous solution. J Sep Sci 35:1675–1981. https://doi.org/10.1002/jssc.201101082

    Article  CAS  PubMed  Google Scholar 

  13. Li Y, Li J, Xu H (2017) Graphene/polyaniline electrodeposited needle trap device for the determination of volatile organic compounds in human exhaled breath vapor and A549 cell. RSC Adv 7:11959–11968. https://doi.org/10.1039/C6RA25453E

    Article  CAS  Google Scholar 

  14. Djozan D, Farajzadeh MA, Sorouraddin SM, Baheri T (2012) Determination of methamphetamine, amphetamine and ecstasy by inside-needle adsorption trap based on molecularly imprinted polymer followed by GC-FID determination. Microchim Acta 179:209–217. https://doi.org/10.1007/s00604-012-0879-1

    Article  CAS  Google Scholar 

  15. Chen S, Yan J, Li J, Zhang Y, Lu D (2017) Solid phase extraction with titanium dioxide nanofibers combined with dispersive liquid-liquid microextraction for speciation of thallium prior to electrothermal vaporization ICP-MS. Microchim Acta 184:2797–2803. https://doi.org/10.1007/s00604-017-2309-x

    Article  CAS  Google Scholar 

  16. Xu Q, Yin X, Wu S, Wang M, Wen Z, Gu Z (2010) Determination of phthalate esters in water samples using Nylon6 nanofibers mat-based solid-phase extraction coupled to liquid chromatography. Microchim Acta 168:267–275. https://doi.org/10.1007/s00604-010-0290-8

    Article  CAS  Google Scholar 

  17. Sun B, Long Y, Zhang H, Li M, Duvail J, Jiang X, Yin H (2014) Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog Polym Sci 39:862–890. https://doi.org/10.1016/j.progpolymsci.2013.06.002

    Article  CAS  Google Scholar 

  18. Zhong S, Zhang Y, Lim CT (2012) Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: a review. Tissue Eng B Rev 18:77–87. https://doi.org/10.1089/ten.TEB.2011.0390

    Article  CAS  Google Scholar 

  19. Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng B Rev 19:485–502. https://doi.org/10.1089/ten.TEB.2012.0437

    Article  CAS  Google Scholar 

  20. Lee SB, Kim YH, Chong MS, Hong SH, Lee YM (2005) Study of gelatin-containing artificial skin V: fabrication of gelatin scaffolds using a salt-leaching method. Biomaterials 26:1961–1968. https://doi.org/10.1016/j.biomaterials.2004.06.032

    Article  CAS  PubMed  Google Scholar 

  21. Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R (1996) Novel approach to fabricate porous sponges of poly (D, L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17:1417–1422. https://doi.org/10.1016/0142-9612(96)87284-X

    Article  CAS  PubMed  Google Scholar 

  22. Whang K, Thomas C, Healy K, Nuber G (1995) A novel method to fabricate bioabsorbable scaffolds. Polymer 36:837–842. https://doi.org/10.1016/0032-3861(95)93115-3

    Article  CAS  Google Scholar 

  23. Kim MS, Son J, Lee H, Hwang H, Choi CH, Kim G (2014) Highly porous 3D nanofibrous scaffolds processed with an electrospinning/laser process. Curr Appl Phys 14:1–7. https://doi.org/10.1016/j.cap.2013.10.008.

    Article  Google Scholar 

  24. Yokoyama Y, Hattori S, Yoshikawa C, Yasuda Y, Koyama H, Takato T, Kobayashi H (2009) Novel wet electrospinning system for fabrication of spongiform nanofiber 3-dimensional fabric. Mater Lett 63:754–756. https://doi.org/10.1016/j.matlet.2008.12.042

    Article  CAS  Google Scholar 

  25. Kostakova E, Seps M, Pokorny P, Lukas D (2014) Study of polycaprolactone wet electrospinning process. Express Polym Lett 8:554–564. https://doi.org/10.3144/expresspolymlett.2014.59

    Article  CAS  Google Scholar 

  26. Taskin MB, Xu R, Gregersen H, Nygaard JV, Besenbacher F, Chen M (2016) Three-dimensional Polydopamine functionalized coiled microfibrous scaffolds enhance human mesenchymal stem cells colonization and mild Myofibroblastic differentiation. ACS Appl Mater Interfaces 8:15864–15873. https://doi.org/10.1021/acsami.6b02994

    Article  CAS  PubMed  Google Scholar 

  27. Bagheri H, Roostaie A (2014) Electrospun modified silica-polyamide nanocomposite as a novel fiber coating. J Chromatogr A 1324:11–20. https://doi.org/10.1016/j.chroma.2013.11.024

    Article  CAS  PubMed  Google Scholar 

  28. Bagherzadeh R, Latifi M, Kong L (2014) Three-dimensional pore structure analysis of polycaprolactone nano-microfibrous scaffolds using theoretical and experimental approaches. J Biomed Mater Res A 102:903–910. https://doi.org/10.1002/jbm.a.34736

    Article  CAS  PubMed  Google Scholar 

  29. Bagheri H, Najarzadekan H, Roostaie A (2014) Electrospun polyamide-polyethylene glycol nanofibers for headspace solid-phase microextration. J Sep Sci 37:1880–1886. https://doi.org/10.1002/jssc.201400037

    Article  CAS  PubMed  Google Scholar 

  30. Bagheri H, Javanmardi H, Abbasi A, Banihashemi S (2016) A metal organic framework-polyaniline nanocomposite as a fiber coating for solid phase microextraction. J Chromatogr A 1431:27–35. https://doi.org/10.1016/j.chroma.2015.12.077

    Article  CAS  PubMed  Google Scholar 

  31. Alonso M, Cerdan L, Godayol A, Anticó E, Sanchez JM (2011) Headspace needle-trap analysis of priority volatile organic compounds from aqueous samples: application to the analysis of natural and waste waters. J Chromatogr A 1218:8131–8139. https://doi.org/10.1016/j.chroma.2011.09.042

    Article  CAS  PubMed  Google Scholar 

  32. Bagheri H, Aghakhani A (2011) Novel nanofiber coatings prepared by electrospinning technique for headspace solid-phase microextraction of chlorobenzenes from environmental samples. Anal Methods 3:1284–1289. https://doi.org/10.1039/C0AY00766H

    Article  CAS  Google Scholar 

  33. Bagheri H, Aghakhani A (2012) Polyaniline-nylon-6 electrospun nanofibers for headspace adsorptive microextraction. Anal Chim Acta 713:63–69. https://doi.org/10.1016/j.aca.2011.11.027

    Article  CAS  PubMed  Google Scholar 

  34. He Y, Wang Y, Lee HK (2000) Trace analysis of ten chlorinated benzenes in water by headspace solid-phase microextraction. J Chromatogr A 874:149–154. https://doi.org/10.1016/S0021-9673(00)00067-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Research Council of Sharif University of Technology is profoundly acknowledged for supporting this work [Grant number G940603].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Bagheri.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 423 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, H., Manshaei, F. & Rezvani, O. Three-dimensional nanofiber scaffolds are superior to two-dimensional mats in micro-oriented extraction of chlorobenzenes. Microchim Acta 185, 322 (2018). https://doi.org/10.1007/s00604-018-2858-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2858-7

Keywords

Navigation