Skip to main content
Log in

CdFe2O4 films for electroresistive detection of ethanol and formaldehyde vapors

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Spinel CdFe2O4 thin films were synthesized by spray pyrolysis. The structural probe studies confirmed the multicrystalline nature of the films with their spinel structure. The crystallites have sizes between 13 and 37 nm and island morphology. The energy dispersive spectroscopy reveals the presence of iron, oxygen and cadmium in the film. The room temperature electrical resistance of the thin film, best measured at a voltage of 10 V, decreases rapidly if it is exposed to vapors of formaldehyde or ethanol. The sensor has detection limits of 15 ppm for ethanol and of 15 ppm for formaldehyde and a sensitivity of 0.0387 nA per ppm of ethanol.

The perception on the interaction properties of alcohol vapors namely ethanol and formaldehyde in CdFe2O4 thin film. This work clearly suggested that the CdFe2O4 material is a good candidate for sensing ethanol and formaldehyde vapor molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tudorache F, Rezlescu E, Popa PD, Rezlescu N (2008) Study of some simple ferrites as reducing gas sensors. J Optoelectron Adv Mater 10:1889–1893

    CAS  Google Scholar 

  2. Yamazoe N (1991) New approaches for improving semiconductor gas sensors. Sensors Actuators B Chem 5:7–19

    Article  CAS  Google Scholar 

  3. Verma M, Tyagi I, Chandra R, Gupta VK (2017) Adsorptive removal of Pb (II) ions from aqueous solution using CuO nanoparticles synthesized by sputtering method. J Mol Liq 225:936–944

    Article  CAS  Google Scholar 

  4. Pandeeswari R, Jeyaprakash BG (2014) High sensing response of β-Ga2O3 thin film towards ammonia vapours: influencing factors at room temperature. Sensors Actuators B Chem 195:206–214

    Article  CAS  Google Scholar 

  5. Chandiramouli R, Jeyaprakash BG (2015) Operating temperature dependent ethanol and formaldehyde detection of spray deposited mixed CdO and MnO2 thin films. RSC Adv 5:43930–43940

    Article  CAS  Google Scholar 

  6. Reddy CVG, Cao W, Tan OK, Zhu W (2002) Preparation of Fe2O3(0.9)-SnO2(0.1) by hydrazine method: application as an alcohol sensor. Sensors Actuators B Chem 81:170–175

    Article  Google Scholar 

  7. Garzella C, Bontempi E, Depero LE, Vomiero A, Della Mea G, Sberveglieri G (2003) Novel selective ethanol sensors: W/TiO2 thin films by sol–gel spin-coating. Sensors Actuators B Chem 93:495–502

    Article  CAS  Google Scholar 

  8. Hung NH, Thanh ND, Lam NH, Dien ND, Chien ND, Vuong DD (2014) Preparation and ethanol sensing properties of flower-like cupric oxide hierarchical nanorods. Mater Sci Semicond Process 26:18–24

    Article  CAS  Google Scholar 

  9. Yang LF, Wang YL, Wang QH, Yi XX (2012) Preparation and gas-sensing properties of CdFe2O4 semiconductor materials. Adv Mater Res 412:331–335

    Article  CAS  Google Scholar 

  10. Lou XD, Liu SP, Shi DY, Chu WF (2007) Ethanol-sensing characteristics of CdFe2O4 sensor prepared by sol–gel method. Mater Chem Phys 105:67–70

    Article  CAS  Google Scholar 

  11. Chu XF, Zheng CM (2003) Sulfide-sensing characteristics of MFe2O4 (M = Zn, cd, mg and cu) thick film prepared by co-precipitation method. Sensors Actuators B Chem 96:504–508

    Article  CAS  Google Scholar 

  12. Lin Y, Deng P, Nie Y, Hu Y, Xing L, Zhang Y, Xue X (2014) Room-temperature self-powered ethanol sensing of a Pd/ZnO nanoarray nanogenerator driven by human finger movement. Nanoscale 6:4604–4610

    Article  CAS  PubMed  Google Scholar 

  13. Rahman MM, Alam MM, Asiri AM, Islam MA (2017) Ethanol sensor development based on ternary-doped metal oxides (CdO/ZnO/Yb2O3) nanosheets for environmental safety. RSC Adv 7:22627–22639

    Article  CAS  Google Scholar 

  14. Ameen S, Akhtar MS, Shin HS (2013) A sea-cucumber-like hollow polyaniline spheres electrode-based chemical sensor for the efficient detection of aliphatic alcohols. RSC Adv 3:10460–10470

    Article  CAS  Google Scholar 

  15. Rahman MM, Jamal A, Khan SB, Faisal M (2011) Fabrication of highly sensitive ethanol chemical sensor based on Sm-doped Co3O4 Nanokernels by a hydrothermal method. J Phys Chem C 115:9503–9510

    Article  CAS  Google Scholar 

  16. Faisal M, Khan SB, Rahman MM, Jamal A, Umar A (2011) Ethanol chemi-sensor: evaluation of structural, optical and sensing properties of CuO nanosheets. Mater Lett 65:1400–1403

    Article  CAS  Google Scholar 

  17. Liu F, Yang X, Yu Z, Wang B, Guan Y, Liang X, Sun P, Liu F, Gao Y, Lu G (2016) Highly sensitive mixed-potential type ethanol sensors based on stabilized zirconia and ZnNb2O6 sensing electrode. RSC Adv 6:27197–27204

    Article  CAS  Google Scholar 

  18. Rahman MM, Asiri AM (2015) Fabrication of highly sensitive ethanol sensor based on doped nanostructure materials using tiny chips. RSC Adv 5:63252–63263

    Article  CAS  Google Scholar 

  19. Abdullah MM, Rahman MM, Bouzid H, Faisal M, Khan SB, Al-Sayari SA, Ismail AA (2015) Sensitive and fast response ethanol chemical sensor based on as-grown Gd2O3 nanostructures. J Rare Earths 33:214–220

    Article  CAS  Google Scholar 

  20. Abdullah MM, Rahman MM, Faisal M, Khan SB, Singh P, Rub MA, Azum N, Khan A, Khan AAP, Hasmuddin M (2013) Fabrication of ethanol chemical sensors based on as-prepared Gd2O3 Nanorods by facile hydrothermal routes. J Colloid Sci Biotechnol 2:322–327

    Article  CAS  Google Scholar 

  21. Rahman MM, Jamal A, Khan SB, Faisal M (2011) Highly sensitive ethanol chemical sensor based on Ni-doped SnO2 nanostructure materials. Biosens Bioelectron 28:127–134

    Article  CAS  PubMed  Google Scholar 

  22. Mohr GJ, Citterio D, Demuth C, Fehlmann M, Jenny L, Lohse C, Moradian A, Nezel T, Rothmaier M, Spichiger UE (1999) Reversible chemical reactions as the basis for optical sensors used to detect amines, alcohols and humidity. J Mater Chem 9:2259–2264

    Article  CAS  Google Scholar 

  23. Chang X, Peng M, Yang J, Wang T, liu Y, Zheng J, Li X (2015) A miniature room temperature formaldehyde sensor with high sensitivity and selectivity using CdSO4 modified ZnO nanoparticles. RSC Adv 5:75098–75104

    Article  CAS  Google Scholar 

  24. Rahman MM, Khan SB, Faisal M, Asiri AM, Alamry KA (2012) Highly sensitive formaldehyde chemical sensor based on hydrothermally prepared spinel ZnFe2O4 nanorods. Sensors Actuators B Chem 171–172:932–937

    Article  CAS  Google Scholar 

  25. Wang Y, Jiang D, Wei W, Zhu L, Shen L, Wen S, Ruan S (2015) Three dimensions sphere formaldehyde nanosensor applications: preparation and sensing properties. RSC Adv 5:50336–50343

    Article  CAS  Google Scholar 

  26. Norris C.P (2005) Trends in Surf Sci Research, Nova science publishers, Pub. Date: 2005, ISBN: 1-59454-178-7, p. 88

  27. Kannan B, Pandeeswari R, Jeyaprakash BG (2014) Influence of precursor solution volume on the properties of spray deposited α-MoO3 thin films. Ceram Int 40:5817–5823

    Article  CAS  Google Scholar 

  28. Xu Y, Schoonen MAA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 85:543–556

    Article  CAS  Google Scholar 

  29. Silveira JL, Martinelli VJ, Vane LF, Freire Junior JC, Zanzi Vigouroux RA, Tuna CE, Lamas WDQ, Paulino RFS (2014) Incorporation of hydrogen production process in a sugar cane industry: steam reforming of ethanol. Appl Therm Eng 71:94–103

    Article  CAS  Google Scholar 

  30. Lee YP, Liao JT, Cheng YW, Wu TL, Lee SL, Liu JK, Yin SJ (2013) Inhibition of human alcohol and aldehyde dehydrogenases by aspirin and salicylate: assessment of the effects on first-pass metabolism of ethanol. Biochem Pharmacol Alcohol 47:559–565

    CAS  Google Scholar 

  31. Singh G, Kapoor IPS, Dubey R, Srivastava P (2011) Synthesis, characterization and catalytic activity of CdO nanocrystals. Mater Sci Eng B 176:121–126

    Article  CAS  Google Scholar 

  32. Chandiramouli R, Jeyaprakash BG (2013) Review of CdO thin films. Solid State Sci 16:102–110

    Article  CAS  Google Scholar 

  33. Korotcenkov G (2007) Metal oxides for solid-state gas sensors: what determines our choice? Mater Sci Eng B 139:1–23

    Article  CAS  Google Scholar 

  34. Pandeeswari R, Karn RK, Jeyaprakash BG (2014) Ethanol sensing behaviour of sol-gel dip-coated TiO2 thin films. Sensors Actuators B Chem 194:470–477

    Article  CAS  Google Scholar 

  35. Sarafraz-Yazdi A, Rounaghi G, Vatani H, Razavipanah I, Amiri A (2015) Headspace solid phase microextraction of volatile aromatic hydrocarbons using a steel wire coated with an electrochemically prepared nanocomposite consisting of polypyrrole, carbon nanotubes, and titanium oxide. Microchim Acta 182:217–225

    Article  CAS  Google Scholar 

  36. Hasani A, Dehsari HS, Gavgani JN, Shalamzari EK, Salehi A, Afshar Taromi F, Mahyari M (2015) Sensor for volatile organic compounds using an interdigitated gold electrode modified with a nanocomposite made from poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) and ultra-large graphene oxide. Microchim Acta 182:1551–1559

    Article  CAS  Google Scholar 

  37. Tamvakos A, Calestani D, Tamvakos D, Mosca R, Pullini D, Pruna A (2015) Effect of grain-size on the ethanol vapor sensing properties of room-temperature sputtered ZnO thin films. Microchim Acta 182:1991–1999

    Article  CAS  Google Scholar 

  38. Karmakar M, Das P, Pal M, Mondal B, Majumder SB, Mukherjee K (2014) Acetone and ethanol sensing characteristics of magnesium zinc ferrite nano-particulate chemi-resistive sensor. J Mater Sci 49:5766–5771

    Article  CAS  Google Scholar 

  39. Chandiramouli R, Jeyaprakash BG (2015) Operating temperature dependent ethanol and formaldehyde detection of spray deposited mixed CdO and MnO2 thin films. RSC Adv 5:43930–43940

    Article  CAS  Google Scholar 

  40. Arun Kumar KL, Durgajanani S, Jeyaprakash BG, Balaguru Rayappan JB (2013) Nanostructured ceria thin film for ethanol and trimethylamine sensing. Sensors Actuators B Chem 177:19–26

    Article  CAS  Google Scholar 

  41. Sampson SA, Panchal SV, Mishra A, Banerjee S, Datar SS (2017) Quartz tuning fork based portable sensor for vapor phase detection of methanol adulteration of ethanol by using aniline-doped polystyrene microwires. Microchim Acta 184:1659–1667

    Article  CAS  Google Scholar 

  42. Teng H, Wang S (2000) Preparation of porous carbons from phenol–formaldehyde resins with chemical and physical activation. Carbon 38:817–824

    Article  CAS  Google Scholar 

  43. Yang W, Wan P, Zhou X, Hu J, Guan Y, Feng L (2014) Self-assembled In2O3 truncated octahedron string and its sensing properties for formaldehyde. Sensors Actuators B Chem 201:228–233

    Article  CAS  Google Scholar 

  44. Chi X, Liu C, Liu L, Li S, Li H, Zhang X, Bo X, Shan H (2014) Enhanced formaldehyde-sensing properties of mixed Fe2O3 –In2O3 nanotubes. Mater Sci Semicond Process 18:160–164

    Article  CAS  Google Scholar 

  45. Zhang L, Zhao J, Zheng J, Li L, Zhu Z (2011) Shuttle-like ZnO nano/microrods: facile synthesis, optical characterization and high formaldehyde sensing properties. Appl Surf Sci 258:711–718

    Article  CAS  Google Scholar 

  46. Xu K, Zeng D, Tian S, Zhang S, Xie C (2014) Hierarchical porous SnO2 micro-rods topologically transferred from tin oxalate for fast response sensors to trace formaldehyde. Sensors Actuators B Chem 190:585–592

    Article  CAS  Google Scholar 

  47. Zheng Y, Wang J, Yao P (2011) Formaldehyde sensing properties of electrospun NiO-doped SnO2 nanofibers. Sensors Actuators B Chem 156:723–730

    Article  CAS  Google Scholar 

  48. Graunke T, Schmitt K, Raible S, Wöllenstein J (2016) Towards enhanced gas sensor performance with fluoropolymer membranes. Sensors 16:1605

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arunachalam Thayumanavan.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 889 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagarajan, V., Thayumanavan, A. CdFe2O4 films for electroresistive detection of ethanol and formaldehyde vapors. Microchim Acta 185, 319 (2018). https://doi.org/10.1007/s00604-018-2855-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2855-x

Keywords

Navigation