Skip to main content
Log in

A Fe3O4@SiO2@graphene quantum dot core-shell structured nanomaterial as a fluorescent probe and for magnetic removal of mercury(II) ion

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe the synthesis of a multifunctional nanocomposite with an architecture of type Fe3O4@SiO2@graphene quantum dots with an average diameter of about 22 nm. The graphene quantum dots (GQDs) were covalently immobilized on the surface of silica-coated magnetite nanospheres via covalent linkage to surface amino groups. The nanocomposite displays a strong fluorescence (with excitation/emission peaks at 330/420 nm) that is fairly selectively quenched by Hg2+ ions, presumably due to nonradiative electron/hole recombination annihilation. Under the optimized experimental conditions, the linear response to Hg2+ covers the 0.1 to 70 μM concentration range, with a 30 nM lower detection limit. The high specific surface area and abundant binding sites of the GQDs result in a good adsorption capacity for Hg2+ (68 mg⋅g−1). The material, due to its superparamagnetism, can be separated by using a magnet and also is recyclable with EDTA so that it can be repeatedly used for simultaneous detection and removal of Hg2+ from contaminated water.

A schematic view of preparation process for the Fe3O4@SiO2@graphene quantum dots nanocomposite (denoted as Fe3O4@SiO2@GQDs). The graphene quantum dots were covalently immobilized on the surface of silica-coated magnetite nanospheres (Fe3O4@SiO2) via covalent linkage to surface amino groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amini MK, Khezri B, Firooz AR (2008) Development of a highly sensitive and selective optical chemical sensor for batch and flow-through determination of mercury ion. Sensors Actuators B Chem 131:470–478

    Article  CAS  Google Scholar 

  2. Wang ZX, Ding SN (2014) One-pot green synthesis of high quantum yield oxygen-doped, nitrogen-rich, photoluminescent polymer carbon nanoribbons as an effective fluorescent sensing platform for sensitive and selective detection of silver(I) and mercury(II) ions. Anal Chem 86:7436–7445

    Article  CAS  Google Scholar 

  3. Ding Y, Wang S, Li J, Chen L (2016) Nanomaterial-based optical sensors for mercury ions. Trends Anal Chem 82:175–190

    Article  CAS  Google Scholar 

  4. Hallaj T, Amjadi M, Manzoori JL, Shokri R (2015) Chemiluminescence reaction of glucose-derived graphene quantum dots with hypochlorite, and its application to the determination of free chlorine. Microchim Acta 182:789–796

    Article  CAS  Google Scholar 

  5. Li Y, Hu Y, Zhao Y, Shi G, Deng L, Hou Y, Qu L (2011) An electrochemical avenue to green luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv Mater 23:776–780

    Article  Google Scholar 

  6. Sun R, Wang Y, Ni Y, Kokot S (2014) Graphene quantum dots and the resonance light scattering technique for trace analysis of phenol in different water samples. Talanta 125:341–346

    Article  CAS  Google Scholar 

  7. Bacon M, Bradley SJ, Nann T (2014) Graphene quantum dots. Part Part Syst Charact 31:415–428

    Article  CAS  Google Scholar 

  8. Li L, Wu G, Yang G, Peng J, Zhao J, Zhu JJ (2013) Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5:4015–4039

    Article  CAS  Google Scholar 

  9. Xu J, Wang Y, Hu S (2017) Nanocomposites of graphene and graphene oxides: synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchim Acta 184:1–44

    Article  CAS  Google Scholar 

  10. Zhang C, Cui Y, Song L, Liu X, Hu Z (2016) Microwave assisted one-pot synthesis of graphene quantum dots as highly sensitive fluorescent probes for detection of iron ions and pH value. Talanta 150:54–60

    Article  CAS  Google Scholar 

  11. Wang FX, Gu ZY, Lei W, Wang WJ, Xia XF, Hao QL (2014) Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper(II) ions. Sensors Actuators B Chem 190:516–522

    Article  CAS  Google Scholar 

  12. Qi YX, Zhang M, Fu QQ, Liu R, Shi GY (2013) Highly sensitive and selective fluorescent detection of cerebral lead(II) based on graphene quantum dot conjugates. Chem Commun 49:10599–10601

    Article  CAS  Google Scholar 

  13. Chakraborti H, Sinha S, Ghosh S, Pal SK (2013) Interfacing water soluble nanomaterials with fluorescence chemosensing: graphene quantum dot to detect Hg2+ in 100% aqueous solution. Mater Lett 97:78–80

    Article  CAS  Google Scholar 

  14. Wang B, Zhuo S, Chen L, Zhang Y (2014) Fluorescent graphene quantum dot nanoprobes for the sensitive and selective detection of mercury ions. Spectrochim Acta A Mol Biomol Spectrosc 131:384–387

    Article  CAS  Google Scholar 

  15. Li Z, Wang Y, Ni Y, Kokot S (2015) A rapid and label-free dual detection of Hg (II) and cysteine with the use of fluorescence switching of graphene quantum dots. Sensors Actuators B Chem 207:490–497

    Article  CAS  Google Scholar 

  16. Yu N, Peng H, Xiong H, Wu X, Wang X, Li Y, Chen L (2015) Graphene quantum dots combined with copper(II) ions as a fluorescent probe for turn-on detection of sulfide ions. Microchim Acta 182:2139–2146

    Article  CAS  Google Scholar 

  17. Zhou Y, Qu ZB, Zeng Y, Zhou T, Shi G (2014) A novel composite of graphene quantum dots and molecularly imprinted polymer for fluorescent detection of paranitrophenol. Biosens Bioelectron 52:317–323

    Article  CAS  Google Scholar 

  18. Shao T, Zhang P, Tang L, Zhuo S, Zhu C (2015) Highly sensitive enzymatic determination of urea based on the pH-dependence of the fluorescence of graphene quantum dots. Microchim Acta 182:1431–1437

    Article  CAS  Google Scholar 

  19. He YZ, Wang XX, Sun J, Jiao SF, Chen HQ, Gao F, Wang L (2014) Fluorescent blood glucose monitor by hemin-functionalized grapheme quantum dots based sensing system. Anal Chim Acta 810:71–78

    Article  CAS  Google Scholar 

  20. Xu Y, Zhou Y, Ma W, Wang S, Li S (2013) Functionalized magnetic core–shell Fe3O4@SiO2 nanoparticles for sensitive detection and removal of Hg2+. J Nanopart Res 15:1716–1724

    Article  Google Scholar 

  21. Xiao D, Lu T, Zeng R, Bi Y (2016) Preparation and highlighted applications of magnetic microparticles and nanoparticles: a review on recent advances. Microchim Acta 183:2655–2675

    Article  CAS  Google Scholar 

  22. Lu D, Yang L, Tian Z, Wang L, Zhang J (2012) Core-shell mesoporous silica nanospheres used as Zn2+ ratiometric fluorescent sensor and adsorbent. RSC Adv 2:2783–2789

    Article  CAS  Google Scholar 

  23. Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, Lin X, Chen G (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50:4738–4743

    Article  CAS  Google Scholar 

  24. Liu Y, Liu CY, Zhang ZY (2011) Synthesis and surface photochemistry of graphitized carbon quantum dots. J Colloid Interface Sci 356:416–421

    Article  CAS  Google Scholar 

  25. Dai Y, Long H, Wang X, Wang Y, Gu Q, Jiang W, Wang Y, Li C, Zeng TH, Sun Y, Zeng J (2014) Versatile graphene quantum dots with tunable nitrogen doping. Part Part Syst Charact 31:597–604

    Article  CAS  Google Scholar 

  26. Fan LS, Hu YW, Wang X, Zhang LL, Li FH, Han DX, Li ZG, Zhang QX, Wang ZX, Niu L (2012) Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT. Talanta 101:192–197

    Article  CAS  Google Scholar 

  27. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York

    Book  Google Scholar 

  28. Mohapatra S, Sahu S, Sinha N, Bhutia SK (2015) Synthesis of a carbon-dot-based photoluminescent probe for selective and ultrasensitive detection of Hg2+ in water and living cells. Analyst 140:1221–1228

    Article  CAS  Google Scholar 

  29. Lu Y, Yu J, Ye W, Yao X, Zhou P, Zhang H, Zhao S, Jia L (2016) Spectrophotometric determination of mercury(II) ions based on their stimulation effect on the peroxidase-like activity of molybdenum disulfide nanosheets. Microchim Acta 183:2481–2489

    Article  CAS  Google Scholar 

  30. Kamali KZ, Pandikumar A, Jayabal S, Ramaraj R, Lim HN, Ong BH, Bien CSD, Kee YY, Huang NM (2016) Amalgamation based optical and colorimetric sensing of mercury(II) ions with silver@graphene oxide nanocomposite materials. Microchim Acta 183:369–377

    Article  Google Scholar 

  31. Chen ZB, Zhang CM, Tan Y, Zhou TH, Ma H, Wan CQ, Lin YQ, Li K (2015) Chitosan-functionalized gold nanoparticles for colorimetric detection of mercury ions based on chelation-induced aggregation. Microchim Acta 182:611–616

    Article  CAS  Google Scholar 

  32. Shamsipur M, Safavi A, Mohammadpour Z, Ahmadi R (2016) Highly selective aggregation assay for visual detection of mercury ion based on competitive binding of sulfur-doped carbon nanodots to gold nanoparticles and mercury ions. Microchim Acta 183:2327–2335

    Article  CAS  Google Scholar 

  33. Yan F, Kong D, Luo Y, Ye Q, He J, Guo X, Chen L (2016) Carbon dots serve as an effective probe for the quantitative determination and for intracellular imaging of mercury(II). Microchim Acta 183:1611–1618

    Article  CAS  Google Scholar 

  34. Yang R, Ding X, Zhou Y, Li J, Qu L, Zhang K (2015) A novel fluorescent sensor for mercury (II) ion using self-assembly of poly(diallyl dimethyl ammonium)chloride functionalized CdTe quantum dots. Anal Methods 7:436–442

    Article  CAS  Google Scholar 

  35. Ding X, Qu L, Yang R, Zhou Y, Yang J, Li J (2015) A highly selective and simple fluorescent sensor for mercury (II) ion detection based on cysteamine-capped CdTe quantum dots synthesized by the reflux method. Luminescence 30:465–471

    Article  CAS  Google Scholar 

  36. Zhang J, Yu SH (2014) Highly photoluminescent silicon nanocrystals for rapid, label-free and recyclable detection of mercuric ions. Nanoscale 6:4096–4101

    Article  CAS  Google Scholar 

  37. Lu W, Qin X, Liu S, Chang G, Zhang Y, Luo Y, Asiri AM, Alyoubi AO, Sun X (2012) Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal Chem 84:5351–5357

    Article  CAS  Google Scholar 

  38. Wu ZZ, Li WY, Chen J, Yu C (2014) A graphene quantum dot-based method for the highly sensitive and selective fluorescence turn on detection of biothiols. Talanta 119:538–543

    Article  CAS  Google Scholar 

  39. Xia YS, Zhu CQ (2008) Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (II). Talanta 75:215–221

    CAS  Google Scholar 

  40. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support of this investigation by The Research Council of University of Tehran through Grant (Grant no.94009890).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzaneh Shemirani.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 946 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvand, M., Shemirani, F. A Fe3O4@SiO2@graphene quantum dot core-shell structured nanomaterial as a fluorescent probe and for magnetic removal of mercury(II) ion. Microchim Acta 184, 1621–1629 (2017). https://doi.org/10.1007/s00604-017-2134-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2134-2

Keywords

Navigation