Skip to main content
Log in

Functionalized magnetic core–shell Fe3O4@SiO2 nanoparticles for sensitive detection and removal of Hg2+

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The Fe3O4 nanoparticles [NPs] coated with silica nanoparticles were designed and prepared, the obtained Fe3O4@SiO2 NPs have uniform spherical morphology with a mean diameter of about 22 nm. The inert silica coating on the surface of Fe3O4 NPs not only significantly prevented their aggregation in solution but also improved their chemical stability and provided wider sites for surface modification with organic chemosensors. Subsequently an attempt had been made that the as-synthesized Fe3O4@SiO2 NPs were modified by N-(rhodamine-6G) lactam–ethylenediamine, the functionalized magnetic Fe3O4@SiO2 NPs (Fe3O4@SiO2-Rho) served as a “naked eye” fluorescent sensor to detect Hg2+. The Fe3O4@SiO2-Rho NPs exhibited selective “turn-on” type fluorescent change from colorless to orange when adding to Hg2+. In addition, the adsorption experiments revealed that the Fe3O4@SiO2-Rho NPs had effective removal toward Hg2+. Moreover, the functionalized Fe3O4@SiO2 microspheres displayed superparamagnetic properties, which made it easier to separate the nanocomposites from the liquid phase by adding an external magnetic field. Our efforts provided a potential magnetic nanomaterial for sensitive detection and removal toward Hg2+ simultaneously.

Graphical Abstract

A rhodamine 6G derivative functionalized Fe3O4@SiO2 nanoparticles were designed and synthesized (as Fe3O4@SiO2-Rho). The Fe3O4@SiO2-Rho exhibited selective “turn-on” type fluorescent change from colorless to orange with Hg2+, which constituted an Hg2+-selective fluorescent colorimetric nanosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andriola SAK, Wilhelm C, Tabi JK, Luciani N, Gazeau F (2012) Cellular transfer of magnetic nanoparticles via cell microvesicles: impact on cell tracking by magnetic resonance imaging. Pharm Res 29:1392–1403

    Article  Google Scholar 

  • Corato RD, Bigall NC, Ragusa A, Dorfs D, Genovese A, Marotta R, Manna L, Pellegrino T (2011) Multifunctional nanobeads based on quantum dots and magnetic nanoparticles: synthesis and cancer cell targeting and sorting. ACS Nano 2:1109–1121

    Article  Google Scholar 

  • Ebrahimpour M, Mosavisefat M, Mohabbati R (2010) Acute toxicity bioassay of mercuric chloride: an alien fish from a river. Toxicol Environ Chem 92:169–173

    Article  CAS  Google Scholar 

  • Filpponen I, Kontturi E, Nummelin S, Rosilo H, Kolehmainen E, Ikkala O, Laine J (2012) Generic method for modular surface modification of cellulosic materials in aqueous medium by sequential “click” reaction and adsorption. Biomacromolecules 13:736–742

    Article  CAS  Google Scholar 

  • Gutknecht J (1981) Inorganic mercury (Hg2+) transport through lipid bilayer membranes. J Membr Biol 61:61–66

    Article  CAS  Google Scholar 

  • Hua D, Tang J, Jiang J, Gu Z, Dai L, Zhu X (2009) Controlled grafting modification of silica gel via RAFT polymerization under ultrasonic irradiation. Mater Chem Phys 114:402–406

    Article  CAS  Google Scholar 

  • Ju H, Lee MH, Kim J, Kim JS, Kim J (2011) Rhodamine-based chemosensing monolayers on glass as a facile fluorescent “turn-on” sensing film for selective detection of Pb2+. Talanta 83:1359–1363

    Article  CAS  Google Scholar 

  • Kramer J, Driessen WL, Koch KR, Reedijk J (2005) Highly selective and efficient recovery of Pd, Pt, and Rh from precious metal-containing industrial effluents with silica-based (poly)amine ion exchangers. Sep Sci Technol 39:63–75

    Article  Google Scholar 

  • Li Z, Xi P, Huang L, Xie G, Shi Y, Liu H, Xu M, Chen F, Zeng Z (2011) A highly selective fluorescent chemosensor for Cd(II) based on 8-hydroxyquinoline platform. Inorg Chem Commun 14:1241–1244

    Article  CAS  Google Scholar 

  • Li C, Xu F, Li Y, Zhou K, Zhou Y (2012a) A fluorescent chemosensor for Hg2+ based on naphthalimide derivative by fluorescence enhancement in aqueous solution. Anal Chim Acta 717:122–126

    Article  CAS  Google Scholar 

  • Li Q, Chai L, Qin W (2012b) Cadmium(II) adsorption on esterified spent grain: equilibrium modeling and possible mechanisms. Chem Eng J 197:173–180

    Article  CAS  Google Scholar 

  • Liu K, Zhou Y, Yao C (2011) A highly sensitive and selective ratiometric and colorimetric sensor for Hg2+ based on a rhodamine-nitrobenzoxadiazole conjugate. Inorg Chem Commun 14:1798–1801

    Article  CAS  Google Scholar 

  • Luo Z, Cai K, Hu Y, Li J, Ding X, Zhang B, Xu D, Yang W, Liu P (2012) Redox-responsive molecular nanoreservoirs for controlled intracellular anticancer drug delivery based on magnetic nanoparticles. Adv Mater 24:431–435

    Article  CAS  Google Scholar 

  • Marsza MP (2011) Application of magnetic nanoparticles in pharmaceutical sciences. Pharm Res 28:480–483

    Article  Google Scholar 

  • Nolan EM, Lippard SJ (2003) A “turn-on” fluorescent sensor for the selective detection of mercuric ion in aqueous media. J Am Chem Soc 125:14270–14271

    Article  CAS  Google Scholar 

  • Osman MM, Kholeif SA, Al-Maaty AA, Mahmoud ME (2003) Sorption metal, solid phase extraction and preconcentration properties of two silica gel phases chemically modified with 2-hydroxy-1-naphthaldehyde. Microchim Acta 143:25–31

    Article  CAS  Google Scholar 

  • Park JT, Seo JA, Ahn SH, Kim JH (2010) Surface modification of silica nanoparticles with hydrophilic polymers. J Ind Eng Chem 16:517–522

    Article  CAS  Google Scholar 

  • Quang D, Wu J, Luyen N, Duong T, Dan N, Bao N, Quy P (2011) Rhodamine-derived Schiff base for the selective determination of mercuric ions in water media. Spectrochim Acta Part A 78:753–756

    Article  Google Scholar 

  • Ruan Y, Li C, Tang J, Xie J (2010) Highly sensitive naked-eye and fluorescence “turn-on” detection of Cu2+ using Fenton reaction assisted signal amplification. Chem Commun 46:9220–9222

    Article  CAS  Google Scholar 

  • Shiraishi Y, Nishimura G, Hirai T, Komasawa I (2002) Separation of transition metals using inorganic adsorbents modified with chelating ligands. Ind Eng Chem Res 41:5065–5070

    Article  CAS  Google Scholar 

  • Soh JH, Swamy KMK, Kim SK, Kim S, Lee SH, Yoon J (2007) Rhodamine urea derivatives as fluorescent chemosensors for Hg2+. Tetrahedron Lett 48:5966–5969

    Article  CAS  Google Scholar 

  • Song C, Zhang X, Jia C, Zhou P, Quan X, Duan C (2010) Highly sensitive and selective fluorescence sensor based on functional SBA-15 fordetection of Hg2+ in aqueous media. Talanta 81:643–649

    Article  CAS  Google Scholar 

  • Wang S, Sun W, Zhou Y (2010) Preparation of Cu2+/NTA-derivatized branch polyglycerol magnetic nanoparticles for protein adsorption. J Nanopart Res 12:2467–2472

    Article  CAS  Google Scholar 

  • Wang Z, Wu D, Wu G, Yang N, Wu A (2013) Modifying Fe3O4 microspheres with rhodamine hydrazide for selective detection and removal of Hg2+ ion in water. J Hazard Mater 244–245:621–627

    Article  Google Scholar 

  • Weerasinghe AJ, Schmiesing C, Sinn E (2009) Highly sensitive and selective reversible sensor for the detection of Cr3+. Tetrahedron Lett 50:6407–6410

    Article  CAS  Google Scholar 

  • Wu J, Hwang I, Kim KS, Kim JS (2007) Rhodamine-based Hg2+-selective chemodosimeter in aqueous solution: fluorescent off–on. Org Lett 5:907–910

    Article  Google Scholar 

  • Yan Z, Hu L, Nie L, Lv H (2011) Preparation of 4,4′-bis-(carboxyl phenylazo)-dibenzo-18-crown-6 dye and its application on ratiometric colorimetric recognition to Hg2+. Spectrochim Acta Part A 79:661–665

    Article  CAS  Google Scholar 

  • Yang Y, Yook K, Tae J (2005) A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. J Am Chem Soc 127:16760–16761

    Article  CAS  Google Scholar 

  • Yang H, Zhou Z, Huang K, Yu M, Li F, Yi T, Huang C (2007) Multisignaling optical-electrochemical sensor for Hg2+ based on a rhodamine derivative with a ferrocene unit. Org Lett 23:4729–4732

    Article  Google Scholar 

  • Zhang L, Fan J, Peng X (2009) X-ray crystallographic and photophysical properties of rhodamine-based chemosensor for Fe3+. Spectrochim Acta Part A 73:398–402

    Article  Google Scholar 

  • Zheng H, Qian Z, Xu L, Yuan F, Lan L, Xu J (2006) Switching the recognition preference of rhodamine b spirolactam by replacing one atom: design of rhodamine b thiohydrazide for recognition of Hg(II) in aqueous solution. Org Lett 5:859–861

    Article  Google Scholar 

  • Zhou Y, Wang S, Xie K, Dai Y, Ma W (2011) Versatile functionalization of Fe3O4 nanoparticles via RAFT polymerization and chemistry click. Appl Surf Sci 257:10384–10389

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of this study from NSFC (50903041), Natural Science Foundation of Yunnan Province (2009 CD 026 and 2010 CA 019), 2010 Innovation Fund of Kunming University of Science and Technology (2012YA028), Inspection and Quarantine of the People’s Republic of China (2009 QK 406) were gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Zhou or Wenhui Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Zhou, Y., Ma, W. et al. Functionalized magnetic core–shell Fe3O4@SiO2 nanoparticles for sensitive detection and removal of Hg2+ . J Nanopart Res 15, 1716 (2013). https://doi.org/10.1007/s11051-013-1716-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1716-0

Keywords

Navigation