Skip to main content
Log in

An ultrasensitive amperometric immunosensor for zearalenones based on oriented antibody immobilization on a glassy carbon electrode modified with MWCNTs and AuPt nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The family of zearalenones (ZENs) represents a major group of mycotoxins with estrogenic activity. They are produced by Fusarium fungi and cause adverse effects on human health and animal production. The authors describe here a label-free amperometric immunosensor for the direct determination of ZENs. A glassy carbon electrode (GCE) was first modified with polyethyleneimine-functionalized multi-walled carbon nanotubes. Next, gold and platinum nanoparticles (AuPt-NPs) were electro-deposited. This process strongly increased the surface area for capturing a large amount of antibodies and enhanced the electrochemical performance. In a final step, monoclonal antibody against zearalenone was orientedly immobilized on the electrode, this followed by surface blocking with BSA. The resulting biosensor was applied to the voltammetry determination of ZENs, best at a working voltage of 0.18 V (vs SCE). Under optimized conditions, the method displays a wide linear range that extends from 0.005 to 50 ng mL−1, with a limit of detection of 1.5 pg mL−1 (at an S/N ratio of 3). The assay is highly reproducible and selective, and therefore provides a sensitive and convenient tool for determination of such mycotoxins.

An amperometric immunosensor for the direct determination of ZENs has been developed by immobilizing anti-ZEN monoclonal antibody on multi-walled carbon nanotubest hat were deposited, along with gold and platinum nanoparticles, on a glassy carbon electrode modified with Staphylococcus protein A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shier WT, Shier AC, Xie W, Mirocha CJ (2001) Structure-activity relationships for human estrogenic activity in zearalenone mycotoxins. Toxicon 39:1435–1438

    Article  CAS  Google Scholar 

  2. Kakeya H, Takahashi-Ando N, Kimura M, Onose R, Yamaguchi I, Osada H (2002) Biotransformation of the mycotoxin, zearalenone, to a non-estrogenic compound by a fungal strain of Clonostachys sp. Biosci Biotechnol Biochem 66:2723–2726

    Article  CAS  Google Scholar 

  3. Juan C, Ritieni A, Mañes J (2012) Determination of trichothecenes and zearalenones in grain cereal, flour and bread by liquid chromatography tandem mass spectrometry. Food Chem 134:2389–2397

    Article  CAS  Google Scholar 

  4. Busk Ø, Ndossi D, Frizzell C, Verhaegen S, Uhlig S, Eriksen G, Connolly L, Ropstad E, Sørlie M (2012) Changes in the proteome of the H295R steroidogenesis model associated with exposure to the mycotoxin zearalenone and its metabolites, α- and β-zearalenol. In: Rodrigues P, Eckersall D, de Almeida A (eds) Farm animal proteomics. Wageningen, Netherlands, pp. 55–58

    Chapter  Google Scholar 

  5. Aldana JR, Silva LJ, Pena A, Mañes J, Lino CM (2014) Occurrence and risk assessment of zearalenone in flours from Portuguese and Dutch markets. Food Control 45:51–55

    Article  CAS  Google Scholar 

  6. Qian M, Zhang H, Wu L, Jin N, Wang J, Jiang K (2015) Simultaneous determination of zearalenone and its derivatives in edible vegetable oil by gel permeation chromatography and gas chromatography–triple quadrupole mass spectrometry. Food Chem 166:23–28

    Article  CAS  Google Scholar 

  7. Hsieh HY, Shyu CL, Liao CW, Lee RJ, Lee MR, Vickroy TW, Chou CC (2012) Liquid chromatography incorporating ultraviolet and electrochemical analyses for dual detection of zeranol and zearalenone metabolites in mouldy grains. J Sci Food Agric 92:1230–1237

    Article  CAS  Google Scholar 

  8. Huang H, Tan Y, Shi J, Liang G, Zhu JJ (2010) DNA aptasensor for the detection of ATP based on quantum dots electrochemiluminescence. Nanoscale 2:606–612

    Article  CAS  Google Scholar 

  9. Monerris MJ, Arévalo FJ, Fernández H, Zon MA, Molina PG (2015) Development of a very sensitive electrochemical immunosensor for the determination of 17β-estradiol in bovine serum samples. Sens Actuator B Chem 208:525–531

    Article  CAS  Google Scholar 

  10. Tang D, Su B, Tang J, Ren J, Chen G (2010) Nanoparticle-based sandwich electrochemical immunoassay for carbohydrate antigen 125 with signal enhancement using enzyme-coated nanometer-sized enzyme-doped silica beads. Anal Chem 82:1527–1534

    Article  CAS  Google Scholar 

  11. Loyprasert S, Thavarungkul P, Asawatreratanakul P, Wongkittisuksa B, Limsakul C, Kanatharana P (2008) Label-free capacitive immunosensor for microcystin-LR using self-assembled thiourea monolayer incorporated with Ag nanoparticles on gold electrode. Biosens Bioelectron 24:78–86

    Article  CAS  Google Scholar 

  12. Thavarungkul P, Dawan S, Kanatharana P, Asawatreratanakul P (2007) Detecting penicillin G in milk with impedimetric label-free immunosensor. Biosens Bioelectron 23:688–694

    Article  CAS  Google Scholar 

  13. Dai S, Wu S, Duan N, Wang Z (2016) A luminescence resonance energy transfer based aptasensor for the mycotoxin ochratoxin a using upconversion nanoparticles and gold nanorods. Microchim Acta 183:1909–1916

    Article  CAS  Google Scholar 

  14. Moreno V, Zougagh M, Ríos Á (2016) Hybrid nanoparticles based on magnetic multiwalled carbon nanotube-nanoC18SiO2 composites for solid phase extraction of mycotoxins prior to their determination by LC-MS. Microchim Acta 183:871–880

    Article  CAS  Google Scholar 

  15. Viswanathan S, Rani C, Anand AV, Ho JA (2009) Disposable electrochemical immunosensor for carcinoembryonic antigen using ferrocene liposomes and MWCNT screen-printed electrode. Biosens Bioelectron 24:1984–1989

    Article  CAS  Google Scholar 

  16. Kavosi B, Salimi A, Hallaj R, Amani K (2014) A highly sensitive prostate-specific antigen immunosensor based on gold nanoparticles/PAMAM dendrimer loaded on MWCNTS/chitosan/ionic liquid nanocomposite. Biosens Bioelectron 52:20–28

    Article  CAS  Google Scholar 

  17. Banks CE, Compton RG (2006) New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite. Analyst 131:15–21

    Article  CAS  Google Scholar 

  18. Popov VN (2004) Carbon nanotubes: properties and application. Mater Sci Eng R 43:61–102

    Article  Google Scholar 

  19. Chen Y, Cao H, Shi W, Liu H, Huang Y (2013) Fe–Co bimetallic alloy nanoparticles as a highly active peroxidase mimetic and its application in biosensing. Chem Commun 49:5013–5015

    Article  CAS  Google Scholar 

  20. Chen KJ, Lee CF, Rick J, Wang SH, Liu CC, Hwang BJ (2012) Fabrication and application of amperometric glucose biosensor based on a novel PtPd bimetallic nanoparticle decorated multi-walled carbon nanotube catalyst. Biosens Bioelectron 33:75–81

    Article  Google Scholar 

  21. Safavi A, Farjami F (2011) Electrodeposition of gold–platinum alloy nanoparticles on ionic liquid–chitosan composite film and its application in fabricating an amperometric cholesterol biosensor. Biosens Bioelectron 26:2547–2552

    Article  CAS  Google Scholar 

  22. Feng R, Zhang Y, Li H, Wu D, Xin X, Zhang S, Yu H, Wei Q, Du B (2013) Ultrasensitive electrochemical immunosensor for zeranol detection based on signal amplification strategy of nanoporous gold films and nano-montmorillonite as labels. Anal Chim Acta 758:72–79

    Article  CAS  Google Scholar 

  23. Liu L, Chao Y, Cao W, Wang Y, Luo C, Pang X, Fan D, Wei Q (2014) A label-free amperometric immunosensor for detection of zearalenone based on trimetallic Au-core/AgPt-shell nanorattles and mesoporous carbon. Anal Chim Acta 847:29–36

    CAS  Google Scholar 

  24. Xue X, Wei D, Feng R, Wang H, Wei Q, Du B (2013) Label-free electrochemical immunosensors for the detection of zeranol using graphene sheets and nickel hexacyanoferrate nanocomposites. Anal Methods 5:4159–4164

    Article  CAS  Google Scholar 

  25. Regiart M, Seia MA, Messina GA, Bertolino FA, Raba J (2015) Electrochemical immunosensing using a nanostructured functional platform for determination of α-zearalanol. Microchim Acta 182:531–538

    Article  CAS  Google Scholar 

  26. Regiart M, Pereira SV, Spotorno VG, Bertolino FA, Raba J (2014) Food safety control of zeranol through voltammetric immunosensing on Au–Pt bimetallic nanoparticle surfaces. Analyst 139:4702–4709

    Article  CAS  Google Scholar 

  27. Tang DQ, Zhang DJ, Tang DY, Ai H (2006) Amplification of the antigen–antibody interaction from quartz crystal microbalance immunosensors via back-filling immobilization of nanogold on biorecognition surface. J Immunol Methods 316:144–152

    Article  CAS  Google Scholar 

  28. Oh BK, Kim YK, Park KW, Lee WH, Choi JW (2004) Surface plasmon resonance immunosensor for the detection of salmonella typhimurium. Biosens Bioelectron 19:1497–1504

    Article  CAS  Google Scholar 

  29. Oh BK, Chun BS, Park KW, Lee W, Lee WH, Choi JW (2004) Fabrication of protein G LB film for immunoglobulin G immobilization. Mat Sci Eng C Mater 24:65–69

    Article  Google Scholar 

  30. Makaraviciute A, Ramanaviciene A (2013) Site-directed antibody immobilization techniques for immunosensors. Biosens Bioelectron 50:460–471

    Article  CAS  Google Scholar 

  31. Trilling AK, Beekwilder J, Zuilhof H (2013) Antibody orientation on biosensor surfaces: a minireview. Analyst 138:1619–1627

    Article  CAS  Google Scholar 

  32. Anderson GP, Jacoby MA, Ligler FS, King KD (1997) Effectiveness of protein a for antibody immobilization for a fiber optic biosensor. Biosens Bioelectron 12:329–336

    Article  CAS  Google Scholar 

  33. Liu Y, Yu J (2016) Oriented immobilization of proteins on solid supports for use in biosensors and biochips: a review. Microchim Acta 183:1–19

    Article  CAS  Google Scholar 

  34. Lee W, Oh BK, Bae YM, Paek SH, Lee WH, Choi JW (2003) Fabrication of self-assembled protein a monolayer and its application as an immunosensor. Biosens Bioelectron 19:185–192

    Article  CAS  Google Scholar 

  35. Liu G, Han Z, Nie D, Yang J, Zhao Z, Zhang J, Li H, Liao Y, Song S, De Saeger S, Wu AB (2012) Rapid and sensitive quantitation of zearalenone in food and feed by lateral flow immunoassay. Food Control 27:200–205

    Article  CAS  Google Scholar 

  36. Arribas AS, Bermejo E, Chicharro M, Zapardiel A, Luque GL, Ferreyra NF, Rivas GA (2007) Analytical applications of glassy carbon electrodes modified with multi-wall carbon nanotubes dispersed in polyethylenimine as detectors in flow systems. Anal Chim Acta 596:183–194

    Article  CAS  Google Scholar 

  37. Upadhyay S, Rao GR, Sharma MK, Bhattacharya BK, Rao VK, Vijayaraghavan R (2009) Immobilization of acetylcholineesterase–choline oxidase on a gold–platinum bimetallic nanoparticles modified glassy carbon electrode for the sensitive detection of organophosphate pesticides, carbamates and nerve agents. Biosens Bioelectron 25:832–838

    Article  CAS  Google Scholar 

  38. Tao M, Li X, Wu Z, Wang M, Hua M, Yang Y (2011) The preparation of label-free electrochemical immunosensor based on the Pt–Au alloy nanotube array for detection of human chorionic gonadotrophin. Clin Chim Acta 412:550–555

    Article  CAS  Google Scholar 

  39. Sun X, Zhu Y, Wang X (2012) Amperometric immunosensor based on deposited gold nanocrystals/4, 4′-thiobisbenzenethiol for determination of carbofuran. Food Control 28:184–191

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the “973” program (2013CB127801), Shanghai Municipal Commission for Science and Technology (15230724400 and 14391901800), and the Public Science and Technology Research Funds of State Grains Bureau (201313005-01-2 and 201513006-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aibo Wu.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 598 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Nie, D., Tan, Y. et al. An ultrasensitive amperometric immunosensor for zearalenones based on oriented antibody immobilization on a glassy carbon electrode modified with MWCNTs and AuPt nanoparticles. Microchim Acta 184, 147–153 (2017). https://doi.org/10.1007/s00604-016-1996-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1996-z

Keywords

Navigation