Skip to main content

Advertisement

Log in

Photometric determination of the activity of cellulase and xylanase via measurement of formation of gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a colorimetric assay for the determination of the activity of cellulase and xylanase. Following enzymatic hydrolysis, reductive saccharides are produced which are capable of directly reducing auric acid to form gold nanoparticles (AuNPs). The AuNPs are of fuchsia color and possess a strong plasmonic absorption band at 550 nm. Reaction conditions such as temperature, reaction time, and pH of the solution were optimized. A linear relationship between the concentrations of saccharide and the plasmon absorption of gold nanoparticles at 550 nm allowed for quantitative detection of the saccharides formed in solution, from which the hydrolase activity can be calculated. The detection limits for cellulase and xylanase are 0.14 and 0.080 IU mL−1. The results were compared with those of the 3,5-dinitrosalicylic acid method and showed the established method to be reliable and accurate.

Following enzymatic hydrolysis, reductive saccharides are produced which are capable of directly reducing auric acid to form colloidal gold. The plasmon absorption of the colloidal gold is directly proportional to the amount of reductive saccharides, which can be used to calculate the activity of hydrolase indirectly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Beldman G, Leeuwen SV, Rombouts FM, Voragen FG (1985) The cellulase of trichoderma viride: purification, characterization and comparison of all detectable endoglucanases, exoglucanases and beta-glucosidases. Eur J Biochem 146:301–308. doi:10.1111/j.1432-1033.1985.tb08653.x

    Article  CAS  Google Scholar 

  2. Prade RA (1995) Xylanases: from biology to biotechnology. Biotech Gernet Eng Rev 13:100–131

    Google Scholar 

  3. Zhang Y-HP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481. doi:10.1016/j.biotechadv.2006.03.003

    Article  CAS  Google Scholar 

  4. Johnsen HR, Kirsten K (2014) Cellulase activity screening using pure carboxymethylcellulose: application to soluble cellulolytic samples and to plant tissue prints. Int J Mol Sci 15:830–838. doi:10.3390/ijms15010830

    Article  Google Scholar 

  5. Meddeb-Mouelhi F, Moisan JK, Beauregard M (2014) A comparison of plate assay methods for detecting extracellular cellulase and xylanase activity. Enzym Microb Technol 66:16–19. doi:10.1016/j.enzmictec.2014.07.004

    Article  CAS  Google Scholar 

  6. Yu X, Liu Y, Cui Y, Cheng Q, Zhang Z, Lu J, Meng Q, Teng L, Ren X (2015) Measurement of filter paper activities of cellulase with microplate-based assay. Saudi J Biol Sci 44:S93–S98. doi:10.1016/j.sjbs.2015.06.018

    Google Scholar 

  7. Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268. doi:10.1351/pac198759020257

    CAS  Google Scholar 

  8. Joachim K, Roland G, Heather P, Kurt V (2002) Determination of xylanase, β-glucanase, and cellulase activity. Anal Bioanal Chem 374:80–87. doi:10.1007/s00216-002-1379-7

    Article  Google Scholar 

  9. Ferrari AR, Gaber Y, Fraaije MW (2014) A fast, sensitive and easy colorimetric assay for chitinase and cellulase activity detection. Biotechnol Biofuels 7:1–8. doi:10.1186/1754-6834-7-37

    Article  Google Scholar 

  10. Ostafe R, Prodanovic R, Commandeur U, Fischer R (2012) Flow cytometry-based ultra-high-throughput screening assay for cellulase activity. Anal Biochem 435:93–98. doi:10.1016/j.ab.2012.10.043

    Article  Google Scholar 

  11. Morrell-Falvey JL, Elkins JG, Wang ZW (2015) Determination of the cellulase activity distribution in clostridium thermocellum and Caldicellulosiruptor obsidiansis cultures using a fluorescent substrate. J Environ Sci 34:212–218. doi:10.1016/j.jes.2015.03.009

    Article  Google Scholar 

  12. Chu D, Deng H, Zhang X, Zhang J, Bao J (2012) A simplified filter paper assay method of cellulase enzymes based on HPLC analysis. Appl Biochem Biotechnol 167:190–196. doi:10.1007/s12010-012-9673-0

    Article  CAS  Google Scholar 

  13. Goacher RE, Edwards EA, Yakunin AF, Mims CA, Master ER (2012) Application of time-of-flight-secondary ion mass spectrometry for the detection of enzyme activity on solid wood substrates. Anal Chem 84:4443–4451. doi:10.1021/ac3005346

    Article  CAS  Google Scholar 

  14. Cruys-Bagger N, Ren GL, Tatsumi H, Baumann MJ, Spodsberg N, Andersen HD, Gorton L, Borch K, Westh P (2012) An amperometric enzyme biosensor for real-time measurements of cellobiohydrolase activity on insoluble cellulose. Biotechnol Bioeng 109:3199–3204. doi:10.1002/bit.24593

    Article  CAS  Google Scholar 

  15. Maity D, Bhatt M, Paul P (2015) Calix[4]arene functionalized gold nanoparticles for colorimetric and bare-eye detection of iodide in aqueous media and periodate aided enhancement in sensitivity. Microchim Acta 182:377–384. doi:10.1007/s00604-014-1340-4

    Article  CAS  Google Scholar 

  16. He Y, Zhang X, Yu H (2015) Gold nanoparticle-based colorimetric and visual creatinine assay. Microchim Acta 182:2037–2043. doi:10.1007/s00604-015-1546-0

    Article  CAS  Google Scholar 

  17. Liu G, Yang X, Li T, Yu H, Du X, She Y, Wang J, Wang H, Jin F, Jin M, Shao H, Zheng L, Zhang Y, Zhou P (2015) Spectrophotometric and visual detection of the herbicide atrazine by exploiting hydrogen bond-induced aggregation of melamine-modified gold nanoparticles. Microchim Acta 182:1983–1989. doi:10.1007/s00604-015-1531-7

    Article  CAS  Google Scholar 

  18. Huang P, Li J, Liu X, Wu F (2016) Colorimetric determination of aluminum (III) based on the aggregation of Schiff base-functionalized gold nanoparticles. Microchim Acta 183:863–869. doi:10.1007/s00604-015-1734-y

    Article  CAS  Google Scholar 

  19. Chen Z, Zhang C, Tan Y, Zhou T, Ma H, Wan C, Lin Y, Li K (2015) Chitosan-functionalized gold nanoparticles for colorimetric detection of mercury ions based on chelation-induced aggregation. Microchim Acta 182:611–616. doi:10.1007/s00604-014-1365-8

    Article  CAS  Google Scholar 

  20. Shamsipur M, Safavi A, Mohammadpour Z, Ahmadi R (2016) Highly selective aggregation assay for visual detection of mercury ion based on competitive binding of sulfur-doped carbon nanodots to gold nanoparticles and mercury ions. Microchim Acta 183:2327–2335. doi:10.1007/s00604-016-1870-z

    Article  CAS  Google Scholar 

  21. Alizadeh A, Abdi G, Khodaei MM (2016) Colorimetric and visual detection of silver(I) using gold nanoparticles modified with furfuryl alcohol. Microchim Acta 183:1995–2003. doi:10.1007/s00604-016-1830-7

    Article  CAS  Google Scholar 

  22. Zhan S, Xu H, Zhan X, Wu Y, Wang L, Lv J, Zhou P (2015) Determination of silver(I) ion based on the aggregation of gold nanoparticles caused by silver-specific DNA, and its effect on the fluorescence of rhodamine B. Microchim Acta 182:1411–1419. doi:10.1007/s00604-015-1462-3

    Article  CAS  Google Scholar 

  23. Hu T, Yan X, Na W, Su X (2016) Aptamer-based aggregation assay for mercury(II) using gold nanoparticles and fluorescent CdTe quantum dots. Microchim Acta 183:2131–2137. doi:10.1007/s00604-016-1831-6

    Article  CAS  Google Scholar 

  24. Liu L, Leng Y, Lin H (2016) Photometric and visual detection of Cr(VI) using gold nanoparticles modified with 1, 5-diphenylcarbazide. Microchim Acta 183:1367–1373. doi:10.1007/s00604-016-1777-8

    Article  CAS  Google Scholar 

  25. Liang Y, He Y (2016) Arsenazo III-functionalized gold nanoparticles for photometric determination of uranyl ion. Microchim Acta 183:407–413. doi:10.1007/s00604-015-1659-5

    Article  CAS  Google Scholar 

  26. Wu R, Liao L, Li S, Yang Y, Xiao X, Nie C (2016) Ratiometric colorimetric determination of coenzyme a using gold nanoparticles and a binuclear uranyl complex as optical probes. Microchim Acta 183:715–721. doi:10.1007/s00604-015-1716-0

    Article  CAS  Google Scholar 

  27. Zhang J, Chen Y, Li D, Cao Y, Wang Z, Li G (2016) Colorimetric determination of islet amyloid polypeptide fibrils and their inhibitors using resveratrol functionalized gold nanoparticles. Microchim Acta 183:659–665. doi:10.1007/s00604-015-1687-1

    Article  CAS  Google Scholar 

  28. Xiao C, Liu J, Yang A, Zhao H, He Y, Li X, Yuan Z (2015) Colorimetric determination of neomycin using melamine modified gold nanoparticles. Microchim Acta 182:1501–1507. doi:10.1007/s00604-015-1480-1

    Article  CAS  Google Scholar 

  29. Du B, Wang P, Xiao C, Zhou Y, Wu L, Zhao H, Su X, Yang J, He Y (2016) Antibody-free colorimetric determination of total aflatoxins by mercury (II)-mediated aggregation of lysine-functionalized gold nanoparticles. Microchim Acta 183:1493–1500. doi:10.1007/s00604-016-1786-7

    Article  CAS  Google Scholar 

  30. Liu J, Zhang X, Xiao C, Yang A, Zhao H, He Y, Li Y, Yuan Z (2015) Colorimetric and visual determination of dicyandiamide using gallic acid-capped gold nanoparticles. Microchim Acta 182:435–441. doi:10.1007/s00604-014-1346-y

    Article  CAS  Google Scholar 

  31. Shrivas K, Sahu S, Ghorai A, Shankar R (2016) Gold nanoparticles-based colorimetric determination of cationic surfactants in environmental water samples via both electrostatic and hydrophobic interactions. Microchim Acta 183:827–836. doi:10.1007/s00604-015-1689-z

    Article  CAS  Google Scholar 

  32. Shi Q, Shi Y, Pan Y, Yue Z, Zhang H, Yi C (2015) Colorimetric and bare eye determination of urinary methylamphetamine based on the use of aptamers and the salt-induced aggregation of unmodified gold nanoparticles. Microchim Acta 182:505–511. doi:10.1007/s00604-014-1349-8

    Article  CAS  Google Scholar 

  33. Liu W, Zhang D, Zhu W, Zhang S, Wang Y, Yu S, Liu T, Zhao X, Zhang W, Wang J (2015) Colorimetric and visual determination of total nereistoxin-related insecticides by exploiting a nereistoxin-driven aggregation of gold nanoparticles. Microchim Acta 182:401–408. doi:10.1007/s00604-014-1347-x

    Article  CAS  Google Scholar 

  34. Luan Y, Chen J, Xie G, Li C, Ping H, Ma Z, Lu A (2015) Visual and microplate detection of aflatoxin B2 based on NaCl-induced aggregation of aptamer-modified gold nanoparticles. Microchim Acta 182:995–1001. doi:10.1007/s00604-014-1420-5

    Article  CAS  Google Scholar 

  35. Lepoitevin M, Lemouel M, Bechelany M, Janot JM, Balme S (2015) Gold nanoparticles for the bare-eye based and spectrophotometric detection of proteins, polynucleotides and DNA. Microchim Acta 182:1223–1229. doi:10.1007/s00604-014-1408-1

    Article  CAS  Google Scholar 

  36. Du G, Zhang D, Xia B, Xu L, Wu S, Zhan S, Ni X, Zhou X, Wang L (2016) A label-free colorimetric progesterone aptasensor based on the aggregation of gold nanoparticles. Microchim Acta 183:2251–2258. doi:10.1007/s00604-016-1861-0

    Article  CAS  Google Scholar 

  37. Baron R, Zayats M, Willner I (2005) Dopamine-, L-dopa-, adrenaline-, and noradrenaline-induced growth of Au nanoparticles: assays for the detection of neurotransmitters and of tyrosinase activity. Anal Chem 77:1566–1571. doi:10.1021/ac048691v

    Article  CAS  Google Scholar 

  38. Zayats M, Baron R, Popov I, Willner I (2005) Biocatalytic growth of Au nanoparticles: from mechanistic aspects to biosensors design. Nano Lett 5:21–25. doi:10.1021/nl048547p

    Article  CAS  Google Scholar 

  39. Scampicchio M, Arecchi A, Mannino S (2009) Optical nanoprobes based on gold nanoparticles for sugar sensing. Nanotechnology 20:135501–135505. doi:10.1088/0957-4484/20/13/135501

    Article  Google Scholar 

  40. Scampicchio M, Fuenmayor CA, Mannino S (2009) Sugar determination via the homogeneous reduction of Au salts: a novel optical measurement. Talanta 79:211–215. doi:10.1016/j.talanta.2009.03.033

    Article  CAS  Google Scholar 

  41. Scampicchio M, Wang J, Blasco AJ, Arribas AS, Mannino S, Escarpa A (2006) Nanoparticle-based assays of antioxidant activity. Anal Chem 78:2060–2063. doi:10.1021/ac052007a

    Article  CAS  Google Scholar 

  42. Vilela D, Castañeda R, González MC, Mendoza S, Escarpa A (2015) Fast and reliable determination of antioxidant capacity based on the formation of gold nanoparticles. Microchim Acta 182:105–111. doi:10.1007/s00604-014-1306-6

    Article  CAS  Google Scholar 

  43. Liao S, Qiao Y, Han W, Xie Z, Wu Z, Shen G, Yu R (2012) Acetylcholinesterase liquid crystal biosensor based on modulated growth of gold nanoparticles for amplified detection of acetylcholine and inhibitor. Anal Chem 84:45–49. doi:10.1021/ac202895j

    Article  CAS  Google Scholar 

  44. He P, Shen L, Liu R, Luo Z, Li Z (2011) Direct detection of β-agonists by use of gold nanoparticle-based colorimetric assays. Anal Chem 83:6988–6995. doi:10.1021/ac200769f

    Article  CAS  Google Scholar 

  45. Shen L, Chen J, Li N, He P, Li Z (2014) Rapid colorimetric sensing of tetracycline antibiotics with in situ growth of gold nanoparticles. Anal Chim Acta 839:83–90. doi:10.1016/j.aca.2014.05.021

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by High level project training fund and Youth Fund from Beijing Wuzi University and Beijing Nova program (2013028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Shen.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 427 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, L., Wang, C. & Chen, J. Photometric determination of the activity of cellulase and xylanase via measurement of formation of gold nanoparticles. Microchim Acta 184, 163–168 (2017). https://doi.org/10.1007/s00604-016-1979-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1979-0

Keywords

Navigation