Skip to main content

Advertisement

Log in

A general thiol assay based on the suppression of fluorescence resonance energy transfer in magnetic-resin core-shell nanospheres coated with gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A simple, rapid and sensitive fluorescence resonance energy transfer (FRET) method is presented for the determination of thiols. It is based on the thiol-induced enhancement effect of the surfactant sodium dodecyl sulfate (SDS) on the efficiency of fluorescence resonance energy transfer (FRET) in nanospheres consisting of a magnetic (Fe3O4) core and a phenol-formaldehyde resin (PFR) shell containing gold nanoparticles (AuNPs). The luminescence of the core-shell nanospheres at excitation/emission wavelengths of 390/445 nm, respectively, is quenched by the AuNPs which act as energy acceptors. The interaction of AuNPs with thiol compounds in the presence of SDS suppresses FRET and gives rise to a fluorescent signal whose intensity is proportional to the thiol concentration. The analytical features of seven thiols (homocysteine, thioglycolic acid, glutathione, dodecanethiol, cysteamine, cysteine and N-acetylcysteine) were studied. Detection limits are in the range from 0.14 to 0.49 μmol L−1. The precision of the method, expressed as the relative standard deviation, ranges from 0.4 to 4.9 %. The method was applied to the determination of total thiols in water samples with recovery values between 88.7 and 104.6 %.

The fluorescence resonance energy transfer in magnetic-resin core-shell nanospheres coated with gold nanoparticles is inhibited by thiol compounds in the presence of sodium dodecyl sulfate. This gives rise to a fluorescent signal whose intensity is proportional to the thiol concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang F, Lees E, Amin F, Rivera-Gil P, Yang F, Mulvaney P, Parak WJ (2011) Polymer-coated nanoparticles: a universal tool for biolabelling experiments. Small 7:3113–3127

    Article  CAS  Google Scholar 

  2. Poljansek I, Krajnc M (2005) Characterization of phenol-formaldehyde prepolymer resins by In Line FT-IR spectroscopy. Acta Chim Slov 52:238–244

    Google Scholar 

  3. Al-Imarah FJM, Al-Sawaad HZM (2011) Preparation and fluorescence studies for new naphthol resins. J Mater Environ Sci 2:233–238

    CAS  Google Scholar 

  4. Sapsford KE, Berti L, Medintz IL (2006) Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. Angew Chem Int Ed 45:4562–4588

    Article  CAS  Google Scholar 

  5. Chen NT, Cheng SH, Liu CP, Souris JS, Chen CT, Mou CY, Lo LW (2012) Recent advances in nanoparticles-based Föster resonance energy transfer for biosensing, molecular imaging and drug release profiling. Int J Mol Sci 13:16598–16623

    Article  CAS  Google Scholar 

  6. Ling J, Huang CZ (2010) Energy transfer with gold nanoparticles for analytical application in the field of biochemical and pharmaceutical science. Anal Methods 2:1439–1447

    Article  Google Scholar 

  7. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    Article  CAS  Google Scholar 

  8. Ge S, Lu J, Yan M, Yu F, Yu J, Sun X (2011) Fluorescence resonance energy transfer sensor between quantum dot donors and neutral red acceptors and its detection of BSA in micelles. Dyes Pigments 91:304–308

    Article  CAS  Google Scholar 

  9. Mallick A, Purkayastha P, Chattopadhyay N (2007) Photoprocesses of excited molecules in confined liquid environments: an overview. J Photochem Photobiol C 8:109–127

    Article  CAS  Google Scholar 

  10. Yang P, Zhao Y, Lu Y, Xu QZ, Xu XW, Dong L, Yu SH (2011) Phenol formaldehyde resin nanoparticles loaded with CdTe quantum dots: a fluorescence resonance energy transfer probe for optical visual detection of copper(II) ions. ACS Nano 5:2147–2154

    Article  CAS  Google Scholar 

  11. Yang P, Xu QZ, Jin SY, Zhao Y, Lu Y, Xu XW, Yu SH (2012) Synthesis of Fe3O4@phenol formaldehyde resin core-shell nanospheres loaded with Au nanoparticles as magnetic FRET nanoprobes for detection of thiols in living cells. Chem Eur J 18:1154–1160

    Article  CAS  Google Scholar 

  12. Dalle-Donne I, Rossi R (2009) Analysis of thiols. J Chromatogr B 877:3271–3273

    Article  CAS  Google Scholar 

  13. Gui R, Wang Y, Sun J (2014) Protein-stabilized fluorescent nanocrystals consisting of a gold core and silver shell for detecting the total amount of cysteine and homocysteine. Microchim Acta 181:1231–1238

    Article  CAS  Google Scholar 

  14. Chao MR, Hu CW, Chen JL (2014) Fluorescent turn-on detection of cysteine using a molecularly imprinted polyacrylate linked to allylthiol-capped CdTe quantum dots. Microchim Acta 181:1085–1091

    Article  CAS  Google Scholar 

  15. Timur S, Odaci D, Dincer A, Zihnioglu F, Telefoncu A, Gorton L (2007) Sulfhydryl oxidase modified composite electrode for the detection of reduced thiolic compounds. Sensors Actuators B 125:234–239

    Article  CAS  Google Scholar 

  16. Toyo’oka T (2009) Recent advances in separation and detection methods for thiol compounds in biological samples. J Chromatogr B 877:3318–3330

    Article  Google Scholar 

  17. Zu Y (2009) Molecular and nanoparticle postcolumn reagents for assay of low-molecular-mass biothiols using high-performance liquid chromatography. J Chromatogr B 877:3358–3365

    Article  CAS  Google Scholar 

  18. Al-Farawati R, Van den Berg CMG (2001) Thiols in coastal waters of the western north Sea and english channel. Environ Sci Technol 35:1902–1911

    Article  CAS  Google Scholar 

  19. Zhang J, Wang F, House JD, Page B (2004) Thiols in wetland interstitial waters and their role in mercury and methylmercury speciation. Limnol Oceanogr 49:2276–2286

    Article  CAS  Google Scholar 

  20. Vairavamurthy MA, Goldenberg WS, Ouyang S, Khalid S (2000) The interaction of hydrophilic thiols with cadmium: investigation with a simple model, 3-mercaptopropionic acid. Mar Chem 70:181–189

    Article  CAS  Google Scholar 

  21. Tang D, Wen LS, Santschi PH (2000) Analysis of biogenic thiols in natural water samples by high-performance liquid chromatographic separation and fluorescence detection with ammonium 7-fluorobenzo-2-oxa-1,3-diazole-4sulfonate (SBD-F). Anal Chim Acta 408:299–307

    Article  CAS  Google Scholar 

  22. Tang D, Shafer MM, Vang K, Karner DA, Armstrong DE (2003) Determination of dissolved thiols using solid-phase extraction and liquid chromatographic determination of fluorescently derivatized thiolic compounds. J Chromatogr A 998:31–40

    Article  CAS  Google Scholar 

  23. Liem-Nguyen V, Bouchet S, Björn E (2015) Determination of sub-nanomolar levels of low molecular mass thiols in natural waters by liquid chromatography tandem mass spectrometry after derivatization with p-(hydroxymercuri) benzoate and online preconcentration. Anal Chem 87:1089–1096

    Article  CAS  Google Scholar 

  24. Cui YR, Hong C, Zhou YL, Li Y, Gao XM, Zhang XX (2011) Synthesis of orientedly bioconjugated core/shell Fe3O4@Au magnetic nanoparticles for cell separation. Talanta 85:1246–1252

    Article  CAS  Google Scholar 

  25. You LJ, Xu S, Ma WF, Li D, Zhang YT, Guo J, Hu JJ, Wang CC (2012) Ultrafast hydrotermal synthesis of high quality magnetic core phenol-formaldehyde shell composite microspheres using the microwave method. Langmuir 28:10565–10572

    Article  CAS  Google Scholar 

  26. Yang P, Xu QZ, Jin SY, Lu Y, Zhao Y, Yu SH (2012) Synthesis of multifunctional Ag@Au@phenol formaldehyde resin particles loaded with folic acids for photothermal therapy. Chem Eur J 18:9294–9299

    Article  CAS  Google Scholar 

  27. Long GL, Winefordner JD (1983) Limit of detection. A closer look at the IUPAC definition. Anal Chem 55:712A–724A

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the Spanish MINECO (Ministerio de Economía y Competitividad) (Grant No. CTQ-2012-32941), the Junta de Andalucía (Grant No. P09- FQM4933) and the FEDER-FSE program.

Conflict of interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustina Gómez-Hens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Román-Pizarro, V., Gulzar, U., Fernández-Romero, J.M. et al. A general thiol assay based on the suppression of fluorescence resonance energy transfer in magnetic-resin core-shell nanospheres coated with gold nanoparticles. Microchim Acta 182, 2285–2292 (2015). https://doi.org/10.1007/s00604-015-1579-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1579-4

Keywords

Navigation