Skip to main content
Log in

Rapid capacitive detection of femtomolar levels of bisphenol A using an aptamer-modified disposable microelectrode array

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A label-free and single-step method is reported for rapid and highly sensitive detection of bisphenol A (BPA) in aqueous samples. It utilizes an aptamer acting as a probe molecule immobilized on a commercially available array of interdigitated aluminum microelectrodes. BPA was quantified by measuring the interfacial capacitance change rate caused by the specific binding between bisphenol A and the immobilized aptamer. The AC signal also induces an AC electrokinetic effect to generate microfluidic motion for enhanced binding. The capacitive aptasensor achieves a limit of detection as low as 10 fM(2.8 fg ⋅ mL − 1) with a 20 s response time. The method is inexpensive, highly sensitive, rapid and therefore provides a promising technology for on-site detection of BPA in food and water samples.

A. AC electrokinetics effect plays a vital role in BPA detection by introducing microfluidic movement to accelerate the molecular transport to the electrode surface.

B. The ACEK capacitive aptasensor has a limit of detection as low as 10 fM (2.8 fg ⋅ mL − 1) with a 20-s response time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Staples CA, Dome PB, Klecka GM, Oblock ST, Harris LR (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36(10):2149–2173

    Article  CAS  Google Scholar 

  2. Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV (2007) Human exposure to bisphenol A (BPA). Reprod Toxicol 24(2):139–177

    Article  CAS  Google Scholar 

  3. Le HH, Carlson EM, Chua JP, Belcher SM (2008) Bisphenol A is released from polycarbonate drinking bottles and mimics the neurotoxic actions of estrogen in developing cerebellar neurons. Toxicol Lett 176(2):149–156

    Article  CAS  Google Scholar 

  4. Liao C, Kannan K (2011) Widespread occurrence of bisphenol A in paper and paper products: implications for human exposure. Environ Sience & Technology 45(21):9372–9379

    Article  CAS  Google Scholar 

  5. Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM (2009) Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev 30(1):75–95

    Article  CAS  Google Scholar 

  6. Xue F, Wu J, Chu H, Mei Z, Ye Y, Liu J, Zhang R, Peng C, Zheng L, Chen W (2013) Electrochemical aptasensor for the determination of bisphenol A in drinking water. Microchim Acta 180(1–2):109–115

    Article  CAS  Google Scholar 

  7. Kim KS, J-r J, Choe W-S, Yoo PJ (2015) Electrochemical detection of Bisphenol A with high sensitivity and selectivity using recombinant protein-immobilized graphene electrodes. Biosens Bioelectron 71:214–221

    Article  CAS  Google Scholar 

  8. Braunrath R, Podlipna D, Padlesak S, Cichna-Markl M (2005) Determination of bisphenol A in canned foods by immunoaffinity chromatography, HPLC, and fluorescence detection. J Agric Food Chem 53(23):8911–8917

    Article  CAS  Google Scholar 

  9. Kim A, Li C-R, Jin C-F, Lee KW, Lee S-H, Shon K-J, Park NG, Kim D-K, Kang S-W, Shim Y-B (2007) A sensitive and reliable quantification method for bisphenol A based on modified competitive ELISA method. Chemosphere 68(7):1204–1209

    Article  CAS  Google Scholar 

  10. Mei Z, Deng Y, Chu H, Xue F, Zhong Y, Wu J, Yang H, Wang Z, Zheng L, Chen W (2013) Immunochromatographic lateral flow strip for on-site detection of bisphenol A. Microchim Acta 180(3–4):279–285

    Article  CAS  Google Scholar 

  11. Jiang X, Ding W, Luan C, Ma Q, Guo Z (2013) Biosensor for bisphenol A leaching from baby bottles using a glassy carbon electrode modified with DNA and single walled carbon nanotubes. Microchim Acta 180(11–12):1021–1028

    Article  CAS  Google Scholar 

  12. Chen W-Y, Mei L-P, Feng J-J, Yuan T, Wang A-J, Yu H (2014) Electrochemical determination of bisphenol A with a glassy carbon electrode modified with gold nanodendrites. Microchim Acta 182(3–4):703–709

    Google Scholar 

  13. Yang J, Kim S-E, Cho M, Yoo I-K, Choe W-S, Lee Y (2014) Highly sensitive and selective determination of bisphenol-A using peptide-modified gold electrode. Biosens Bioelectron 61:38–44

    Article  CAS  Google Scholar 

  14. Rahman MA, Shiddiky MJ, Park J-S, Shim Y-B (2007) An impedimetric immunosensor for the label-free detection of bisphenol A. Biosens Bioelectron 22(11):2464–2470

    Article  CAS  Google Scholar 

  15. Li S, Cui H, Yuan Q, Wu J, Wadhwa A, Eda S, Jiang H (2014) AC electrokinetics-enhanced capacitive immunosensor for point-of-care serodiagnosis of infectious diseases. Biosens Bioelectron 51:437–443

    Article  CAS  Google Scholar 

  16. Cui H, Li S, Yuan Q, Wadhwa A, Eda S, Chambers M, Ashford R, Jiang H, Wu J (2013) An AC electrokinetic impedance immunosensor for rapid detection of tuberculosis. Analyst 138(23):7188–7196

    Article  CAS  Google Scholar 

  17. Macdonald JR, Barsoukov E (2005) Impedance spectroscopy: theory, experiment, and applications. History 1:8

    Google Scholar 

  18. Bard AJ, Fulkner LR (1980) Electrochemical methods: fundamentals and applications, vol 2. Wiley, New York

    Google Scholar 

  19. Morgan H, Green NG (2003) AC electrokinetics: colloids and nanoparticles. vol 2. Research Studies Press

  20. Bhatt KH, Grego S, Velev OD (2005) An AC electrokinetic technique for collection and concentration of particles and cells on patterned electrodes. Langmuir 21(14):6603–6612

    Article  CAS  Google Scholar 

  21. Islam N, Lian M, Wu J (2007) Enhancing microcantilever capability with integrated AC electroosmotic trapping. Microfluid Nanofluid 3(3):369–375

    Article  CAS  Google Scholar 

  22. Yang C-K, Chang J-S, Chao SD, Wu K-C (2007) Two dimensional simulation on immunoassay for a biosensor with applying electrothermal effect. Appl Phys Lett 91(11):113904

    Article  Google Scholar 

  23. Lian M, Islam N, Wu J (2007) AC electrothermal manipulation of conductive fluids and particles for lab-chip applications. IET Nanobiotechnol 1(3):36–43

    Article  CAS  Google Scholar 

  24. Ramos A, Morgan H, Green N, Castellanos A (1998) AC electrokinetics: a review of forces in microelectrode structures. J Phys D Appl Phys 31(18):2338

    Article  CAS  Google Scholar 

  25. Green NG, Ramos A, Gonzalez A, Morgan H, Castellanos A (2000) Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements. Phys Rev E 61()):4011

    Article  CAS  Google Scholar 

  26. Wu J, Ben Y, Battigelli D, Chang H-C (2005) Long-range AC electroosmotic trapping and detection of bioparticles. Ind Eng Chem Res 44(8):2815–2822

    Article  CAS  Google Scholar 

  27. Castellanos A, Ramos A, Gonzalez A, Green NG, Morgan H (2003) Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws. J Phys D Appl Phys 36(20):2584

    Article  CAS  Google Scholar 

  28. Henning A, Bier FF, Hölzel R (2010) Dielectrophoresis of DNA: quantification by impedance measurements. Biomicrofluidics 4(2)

  29. Stanke S, Bier F, Hölzel R (2011) Fluid streaming above interdigitated electrodes in dielectrophoresis experiments. Electrophoresis 32(18):2448–2455

    Article  CAS  Google Scholar 

  30. Kuroda N, Kinoshita Y, Sun Y, Wada M, Kishikawa N, Nakashima K, Makino T, Nakazawa H (2003) Measurement of bisphenol A levels in human blood serum and ascitic fluid by HPLC using a fluorescent labeling reagent. J Pharm Biomed Anal 30(6):1743–1749

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial supports from the University of Tennessee Research Foundation Maturation Fund and China’s specialized Research Fund for the Doctoral Program of Higher Education (20120111110024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayne Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 321 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, H., Wu, J., Eda, S. et al. Rapid capacitive detection of femtomolar levels of bisphenol A using an aptamer-modified disposable microelectrode array. Microchim Acta 182, 2361–2367 (2015). https://doi.org/10.1007/s00604-015-1556-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1556-y

Keywords

Navigation