Skip to main content
Log in

Recent developments in nanoparticle-based MALDI mass spectrometric analysis of phosphoproteomes

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Mass spectrometry-based strategies are widely used for mapping of post-translational modifications of phosphoproteins. However, the presence of large amounts of non-phosphopeptides seriously interferes by suppressing the intensities of signals for phosphopeptides in direct MALDI-MS techniques due to the low stoichiometry of protein phosphorylation. Several MALDI-MS approaches are known which use either nanoparticles (NPs) as affinity probes, or NPs as microwave heat absorbers. They assist in the enrichment of trace levels of phosphopeptides from complex protein digests and require minimal sample pretreatment, digestion times, and sample volume. This leads to enhance sensitivity and selectivity in the analysis of the phosphoproteomes. This review (with 89 refs.) summarizes and discusses recent developments in the field, with a particular focus on the potential use of nanomaterials such as metal oxides, metal NPs, NPs-coated target plates, and as core-shell nanocomposites acting as affinity probes and as heat absorbers in MALDI-MS analysis of phosphoproteomes.

We discuss recent developments in the field with the focus on the potential use of nanomaterials, including metal oxides, metal NPs, NPs-coated target plate, core-shell microsphere nanocomposites as affinity probes and as heat absorbers to enhance the performance of MALDI-MS to phosphoproteome analysis. Schematic representation of microwave tryptic digest of casein proteins and their enrichment using DDTC-Au NPs as affinity probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nesvizhskii IA, Aebersold R (2005) Interpretation of shotgun proteomic data. Mol Cell Proteomics 4:1419–1440

    Article  CAS  Google Scholar 

  2. Aebersold R, Goodlett DR (2001) Mass spectrometry in proteomics. Chem Rev 101:269–295

    Article  CAS  Google Scholar 

  3. López-Ferrer D, Petritis K, Robinson EW, Hixson KK, Tian Z, Lee JH, Lee SW, Tolić N, Weitz KK, Belov ME, Smith RD, Pasa-Tolić L (2011) Pressurized pepsin digestion in proteomics: an automatable alternative to trypsin for integrated top-down bottom-up proteomics. Mol Cell Proteomics 10(M110):001479

    Google Scholar 

  4. Zimmermann JG, Brown LR (2001) Perspectives for mass spectrometry and functional proteomics. Mass Spectrom Rev 20:1–57

    Article  Google Scholar 

  5. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153

    Article  CAS  Google Scholar 

  6. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301

    Article  CAS  Google Scholar 

  7. Kailasa SK, Hassan N, Wu HF (2012) Identification of multiply charged proteins and amino acid clusters by liquid nitrogen assisted spray ionization mass spectrometry. Talanta 97:539–549

    Google Scholar 

  8. Fenyo D, Beavis RC (2008) Informatics development: challenges and solutions for MALDI mass spectrometry. Mass Spectrom Rev 27:1–19

    Article  CAS  Google Scholar 

  9. Kelleher NL, Taylor SV, Grannis D, Kinsland C, Chiu HJ, Begley TP, McLafferty FW (1998) Efficient sequence analysis of the six gene products (7–74 kDa) from the Escherichia coli thiamin biosynthetic operon by tandem high-resolution mass spectrometry. Protein Sci 7:1796–1801

    Article  CAS  Google Scholar 

  10. Zubarev RA, Horn DM, Fridriksson EK, Kelleher NL, Kruger NA, Lewis MA, Carpenter BK, McLafferty FW (2000) Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem 72:563–573

    Article  CAS  Google Scholar 

  11. Kelleher NL (2004) Top-down proteomics. Anal Chem 76:197A–203A

    Article  Google Scholar 

  12. Kelleher NL, Lin HY, Valaskovic GA, Aaserud DJ, Fridriksson EK, McLafferty FW (1999) Top down versus bottom up protein characterization by tandem high-resolution mass spectrometry. J Am Chem Soc 121:806–812

    Article  CAS  Google Scholar 

  13. Washburn MP, Wolters D, 3rd Yates JR (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    Article  CAS  Google Scholar 

  14. Gevaert K, Goethals M, Martens L, Van Damme J, Staes A, Thomas GR, Vandekerckhove J (2003) Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. Nat Biotechnol 21:566–569

    Article  CAS  Google Scholar 

  15. Reid GE, McLuckey SA (2002) ‘Top down’ protein characterization via tandem mass spectrometry. J Mass Spectrom 37:663–675

    Article  CAS  Google Scholar 

  16. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  CAS  Google Scholar 

  17. Hunter T (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80:225–236

    Article  CAS  Google Scholar 

  18. Arnott D, Gawinowicz MA, Grant RA, Neubert TA, Packman LC, Speicher KD, Stone K, Turck CW (2003) ABRF-PRG03: phosphorylation site determination. J Biomol Tech 14:205–215

    Google Scholar 

  19. Sickmann A, Meyer HE (2001) Phosphoamino acid analysis. Proteomics 1:200–206

    Article  CAS  Google Scholar 

  20. Hunter T (2000) Signaling—2000 and beyond. Cell 100:113–127

    Article  CAS  Google Scholar 

  21. Welker M, Moore ERB (2011) Applications of whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry in systematic microbiology. Syst Appl Microbiol 34:2–11

    Article  CAS  Google Scholar 

  22. Chiang CK, Chen WT, Chang HT (2011) Nanoparticle-based mass spectrometry for the analysis of biomolecules. Chem Soc Rev 40:1269–1281

    Article  CAS  Google Scholar 

  23. Zhu ZJ, Rotello VM, Vachet RW (2009) Engineered nanoparticle surfaces for improved mass spectrometric analyses. Analyst 134:2183–2188

    Article  CAS  Google Scholar 

  24. Delom F, Chevet E (2006) Phosphoprotein analysis: from proteins to proteomes. Proteome Sci 4:1–12

    Article  Google Scholar 

  25. Sanders DA, Gillececastro BL, Stock AM, Burlingame AL, Koshland DE (1989) Identification of the site of phosphorylation of the chemotaxis response regulator protein, CheY. J Biol Chem 264:21770–21778

    CAS  Google Scholar 

  26. Han G, Ye M, Zou H (2008) Development of phosphopeptide enrichment techniques for phosphoproteome analysis. Analyst 133:1128–1138

    Article  CAS  Google Scholar 

  27. Dunn JD, Reid GE, Bruening ML (2010) Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Mass Spectrom Rev 29:29–54

    CAS  Google Scholar 

  28. Dass C (2009) Recent developments in mass spectrometry analysis of phosphoproteomes. Curr Proteomics 6:32–42

    Article  CAS  Google Scholar 

  29. Beltran L, Cutillas PR (2012) Advances in phosphopeptide enrichment techniques for phosphoproteomics. Amino Acids 43:1009–1024

    Article  CAS  Google Scholar 

  30. Mann M, Ong SE, Grønborg M, Steen H, Jensen ON, Pandey A (2002) Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol 20:261–268

    Article  CAS  Google Scholar 

  31. Zhou HJ, Tian RJ, Ye ML, Xu SY, Feng S, Pan CS, Jiang XG, Li X, Zou HF (2007) Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis. Electrophoresis 28:2201–2215

    Article  CAS  Google Scholar 

  32. Zhang L, Xu J, Sun L, Ma J, Yang K, Liang Z, Zhang L, Zhang Y (2011) Zirconium oxide aerogel for effective enrichment of phosphopeptides with high binding capacity. Anal Bioanal Chem 399:3399–3405

    Article  CAS  Google Scholar 

  33. Nelson CA, Szczech JR, Xu Q, Lawrence MJ, Jin S, Ge Y (2009) Mesoporous zirconium oxide nanomaterials effectively enrich phosphopeptides for mass spectrometry-based phosphoproteomics. Chem Commun 43:6607–6609

    Article  Google Scholar 

  34. Xu S, Whitin JC, Yu TT, Zhou H, Sun D, Sue HJ, Zou H, Cohen HJ, Zare RN (2008) Capture of phosphopeptides using α-zirconium phosphate nanoplatelets. Anal Chem 80:5542–5549

    Article  CAS  Google Scholar 

  35. Kailasa SK, Wu HF (2010) Multifunctional ZrO2 nanoparticles and ZrO2-SiO2 nanorods for improved MALDI-MS analysis of cyclodextrins, peptides, and phosphoproteins. Anal Bioanal Chem 396:1115–1125

    Article  CAS  Google Scholar 

  36. Zhou H, Ye M, Dong J, Han G, Jiang X, Wu R, Zou H (2008) Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis. J Proteome Res 7:3957–3967

    Article  CAS  Google Scholar 

  37. Zhou H, Xu S, Ye M, Feng S, Pan C, Jiang X, Li X, Han G, Fu Y, Zou H (2006) Zirconium phosphonate-modified porous silicon for highly specific capture of phosphopeptides and MALDI-TOF MS analysis. J Proteome Res 5:2431–2437

    Article  CAS  Google Scholar 

  38. Kweon HK, Hakansson K (2006) Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Anal Chem 78:1743–1749

    Article  CAS  Google Scholar 

  39. Hoang T, Roth U, Kowalewski K, Belisle C, Steinert K, Karas M (2010) Highly specific capture and direct MALDI MS analysis of phosphopeptides by zirconium phosphonate on self-assembled monolayers. Anal Chem 82:219–228

    Article  CAS  Google Scholar 

  40. Kamat PV (2012) TiO2 nanostructures: recent physical chemistry advances. J Phys Chem C 116:11849–11851

    Article  CAS  Google Scholar 

  41. Sano A, Nakamura H (2004) Chemo-affinity of titania for the column-switching HPLC analysis of phosphopeptides. Anal Sci 20:565–566

    Article  CAS  Google Scholar 

  42. Liang SS, Makamba H, Huang SY, Chen SH (2006) Nano-titanium dioxide composites for the enrichment of phosphopeptides. J Chromatogr A 1116:38–45

    Article  CAS  Google Scholar 

  43. Tang J, Yin P, Lu X, Qi D, Mao Y, Deng C, Yang P, Zhang X (2010) Development of mesoporous TiO2 microspheres with high specific surface area for selective enrichment of phosphopeptides by mass spectrometric analysis. J Chromatogr A 1217:2197–2205

    Article  CAS  Google Scholar 

  44. Lu Z, Duan J, He L, Hu Y, Yin Y (2010) Mesoporous TiO2 nanocrystal clusters for selective enrichment of phosphopeptides. Anal Chem 82:7249–7258

    Article  CAS  Google Scholar 

  45. Zhang L, Liang Z, Yang K, Xia S, Wu Q, Zhang L, Zhang Y (2012) Mesoporous TiO2 aerogel for selective enrichment of phosphopeptides in rat liver mitochondria. Anal Chim Acta 729:26–35

    Article  CAS  Google Scholar 

  46. Ke Y, Kailasa SK, Wu HF, Nawaz M (2010) Surface-modified TiO2 nanoparticles as affinity probes and as matrices for the rapid analysis of phosphopeptides and proteins in MALDI-TOF-MS. J Sep Sci 33:3400–3408

    Article  CAS  Google Scholar 

  47. Han L, Shan Z, Chen D, Yu X, Yang P, Tu B, Zhao D (2008) Mesoporous Fe2O3 microspheres: rapid and effective enrichment of phosphopeptides for MALDI-TOF MS analysis. J Colloid Interface Sci 318:315–321

    Article  CAS  Google Scholar 

  48. Chen CT, Wang LY, Ho YP (2011) Use of polyethylenimine-modified magnetic nanoparticles for highly specific enrichment of phosphopeptides for mass spectrometric analysis. Anal Bioanal Chem 399:2795–2806

    Article  CAS  Google Scholar 

  49. Tan F, Zhang Y, Wang J, Wei J, Qin P, Cai Y, Qian X (2007) Specific capture of phosphopeptides on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry targets modified by magnetic affinity nanoparticles. Rapid Commun Mass Spectrom 21:2407–2414

    Article  CAS  Google Scholar 

  50. Nelson CA, Szczech JR, Dooley CJ, Xu Q, Lawrence MJ, Zhu H, Jin S, Ge Y (2010) Effective enrichment and mass spectrometry analysis of phosphopeptides using mesoporous metal oxide nanomaterials. Anal Chem 82:7193–7201

    Article  CAS  Google Scholar 

  51. Zhang Y, Yu X, Wang X, Shan W, Yang P, Tang T (2004) Zeolite nanoparticles with immobilized metal ions: isolation and MALDI-TOF-MS/MS identification of phosphopeptides. Chem Commun 40:2882–2883

    Article  Google Scholar 

  52. Wang Y, Chen W, Wu J, Guo Y, Xia X (2007) Highly efficient and selective enrichment of phosphopeptides using porous anodic alumina membrane for MALDI-TOF MS analysis. J Am Soc Mass Spectrom 18:1387–1395

    Article  CAS  Google Scholar 

  53. Li YC, Lin YS, Tsai PJ, Chen CT, Chen WY, Chen YC (2007) Nitrilotriacetic acid-coated magnetic nanoparticles as affinity probes for enrichment of histidine-tagged proteins and phosphorylated peptides. Anal Chem 79:7519–7525

    Article  CAS  Google Scholar 

  54. Chang CK, Wu CC, Wang YS, Chang HC (2008) Selective extraction and enrichment of multiphosphorylated peptides using polyarginine-coated diamond nanoparticles. Anal Chem 80:3791–3797

    Article  CAS  Google Scholar 

  55. Wang H, Duan J, Cheng Q (2011) Photocatalytically patterned TiO2 arrays for on-plate selective enrichment of phosphopeptides and direct MALDI MS analysis. Anal Chem 83:1624–1631

    Article  CAS  Google Scholar 

  56. Eriksson A, Bergquist J, Edwards K, Hagfeldt A, Malmström D, Hernández VA (2011) Mesoporous TiO2-based experimental layout for on-target enrichment and separation of multi- and monophosphorylated peptides prior to analysis with matrix-assisted laser desorption-ionization mass spectrometry. Anal Chem 83:761–766

    Article  CAS  Google Scholar 

  57. Eriksson A, Bergquist J, Edwards K, Hagfeldt A, Malmström D, Hernández AV (2010) Optimized protocol for on-target phosphopeptide enrichment prior to matrix-assisted laser desorption-ionization mass spectrometry using mesoporous titanium dioxide. Anal Chem 82:4577–4583

    Article  CAS  Google Scholar 

  58. Niklew ML, Hochkirch U, Melikyan A, Moritz T, Kurzawski S, Schlüter H, Ebner I, Linscheid MW (2010) Phosphopeptide screening using nanocrystalline titanium dioxide films as affinity matrix-assisted laser desorption ionization targets in mass spectrometry. Anal Chem 82:1047–1053

    Article  CAS  Google Scholar 

  59. Blacken GR, Volný M, Vaisar T, Sadílek M, Turecek F (2007) In situ enrichment of phosphopeptides on MALDI plates functionalized by reactive landing of zirconium (IV)-n-propoxide ions. Anal Chem 79:5449–5456

    Article  CAS  Google Scholar 

  60. Lin HY, Chen CT, Chen YC (2006) Detection of phosphopeptides by localized surface plasma resonance of titania-coated gold nanoparticles immobilized on glass substrates. Anal Chem 78:6873–6878

    Article  CAS  Google Scholar 

  61. Chen JY, Chen YC (2011) A label-free sensing method for phosphopeptides using two-layer gold nanoparticle-based localized surface plasma resonance spectroscopy. Anal Bioanal Chem 399:1173–1180

    Article  CAS  Google Scholar 

  62. Qiao L, Roussel C, Wan J, Yang P, Girault HH, Liu B (2007) Specific on-plate enrichment of phosphorylated peptides for direct MALDI-TOF MS analysis. J Proteome Res 6:4763–4769

    Article  CAS  Google Scholar 

  63. Torta F, Fusi M, Casari CS, Bottani CE, Bachi A (2009) Titanium dioxide coated MALDI plate for on target analysis of phosphopeptides. J Proteome Res 8:1932–1942

    Article  CAS  Google Scholar 

  64. Li Y, Leng T, Lin H, Deng C, Xu X, Yao N, Yang P, Zhang X (2007) Preparation of Fe3O4@ZrO2 core-shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry. J Proteome Res 6:4498–4510

    Article  CAS  Google Scholar 

  65. Lo CY, Chen WY, Chen CT, Chen YC (2007) Rapid enrichment of phosphopeptides from tryptic digests of proteins using iron oxide nanocomposites of magnetic particles coated with zirconia as the concentrating probes. J Proteome Res 6:887–893

    Article  CAS  Google Scholar 

  66. Lin HY, Chen WY, Chen YC (2009) Iron oxide/niobium oxide core-shell magnetic nanoparticle-based phosphopeptide enrichment from biological samples for MALDI MS analysis. J Biomed Nanotechnol 5:215–223

    Article  CAS  Google Scholar 

  67. Li Y, Liu Y, Tang J, Lin H, Yao N, Shen X, Deng C, Yang P, Zhang X (2007) Fe3O4@Al2O3 magnetic core-shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis. J Chromatogr A 1172:57–71

    Article  CAS  Google Scholar 

  68. Chen CT, Chen WY, Tsai PJ, Chien KY, Yu JS, Chen YC (2007) Rapid enrichment of phosphopeptides and phosphoproteins from complex samples using magnetic particles coated with alumina as the concentrating probes for MALDI MS analysis. J Proteome Res 6:316–325

    Article  CAS  Google Scholar 

  69. Li Y, Xu X, Qi D, Deng C, Yang P, Zhang X (2008) Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis. J Proteome Res 7:2526–2538

    Article  CAS  Google Scholar 

  70. Chen CT, Chen YC (2005) Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Anal Chem 77:5912–5919

    Article  CAS  Google Scholar 

  71. Li Y, Wu J, Qi D, Xu X, Deng C, Yang P, Zhang X (2008) Novel approach for the synthesis of Fe3O4@TiO2 core-shell microspheres and their application to the highly specific capture of phosphopeptides for MALDI-TOF MS analysis. Chem Commun 44:564–566

    Article  Google Scholar 

  72. Ma WF, Zhang Y, Li LL, You LJ, Zhang P, Zhang YT, Li JM, Yu M, Guo J, Lu HJ, Wang CC (2012) Tailor-made magnetic Fe3O4@mTiO2 microspheres with a tunable mesoporous anatase shell for highly selective and effective enrichment of phosphopeptides. ACS Nano 6:3179–3188

    Article  CAS  Google Scholar 

  73. Qi D, Lu J, Deng C, Zhang X (2009) Development of core-shell structure Fe3O4@Ta2O5 microspheres for selective enrichment of phosphopeptides for mass spectrometry analysis. J Chromatogr A 1216:5533–5539

    Article  CAS  Google Scholar 

  74. Turapov OA, Mukamolova GV, Bottrill AR, Pangburn MK (2008) Digestion of native proteins for proteomics using a thermocycler. Anal Chem 80:6093–6099

    Article  CAS  Google Scholar 

  75. Bao H, Liu T, Chen X, Chen G (2008) Efficient in-gel proteolysis accelerated by infrared radiation for protein identification. J Proteome Res 7:5339–5344

    Article  CAS  Google Scholar 

  76. Bose AK, Ing YH, Lavlinskaia N, Sareen C, Pramanik BN, Bartner PL, Liu YH, Heimark L (2002) Microwave enhanced akabori reaction for peptide analysis. J Am Soc Mass Spectrom 13:839–850

    Article  CAS  Google Scholar 

  77. Juan HF, Chang SC, Huang HC, Chen ST (2005) A new application of microwave technology to proteomics. Proteomics 5:840–842

    Article  CAS  Google Scholar 

  78. Lopez-Ferrer D, Capelo JL, Vazquez J (2005) Ultra fast trypsin digestion of proteins by high intensity focused ultrasound. J Proteome Res 4:1569–1574

    Article  CAS  Google Scholar 

  79. Zhang Y, Li L, Yang P, Lu H (2012) On-plate enrichment methods for MALDI-MS analysis in proteomics. Anal Methods 4:2622–2631

    Article  CAS  Google Scholar 

  80. Shrivas K, Kailasa SK, Wu HF (2009) Quantum dots laser desorption/ionization MS: multifunctional CdSe quantum dots as the matrix, concentrating probes and acceleration for microwave enzymatic digestion for peptide analysis and high resolution detection of proteins in a linear MALDI-TOF MS. Proteomics 9:2656–2667

    Article  CAS  Google Scholar 

  81. Wu HF, Kailasa SK, Shastri L (2010) Electrostatically self-assembled azides on zinc sulfide nanoparticles as multifunctional nanoprobes for peptide and protein analysis in MALDI-TOF MS. Talanta 82:540–547

    Article  CAS  Google Scholar 

  82. Kailasa SK, Wu HF (2012) Functionalized quantum dots with dopamine dithiocarbamate as the matrix for the quantification of efavirenz in human plasma and as affinity probes for rapid identification of microwave tryptic digested proteins in MALDI-TOF-MS. J Proteome 75:2924–2933

    Article  CAS  Google Scholar 

  83. Lin HY, Chen WY, Chen YC (2009) Iron oxide/tantalum oxide core-shell magnetic nanoparticle-based microwave-assisted extraction for phosphopeptide enrichment from complex samples for MALDI MS analysis. Anal Bioanal Chem 394:2129–2136

    Article  CAS  Google Scholar 

  84. Chen WY, Chen YC (2010) Functional Fe3O4@ZnO magnetic nanoparticle-assisted enrichment and enzymatic digestion of phosphoproteins from saliva. Anal Bioanal Chem 398:2049–2057

    Article  CAS  Google Scholar 

  85. Juang YM, Chen CJ, Lai CC (2011) Conductive carbon tape as a sample platform for microwave-based MALDI MS detection of proteins and phosphoproteins. Anal Bioanal Chem 401:1219–1229

    Article  CAS  Google Scholar 

  86. Kailasa SK, Wu HF (2012) One-pot synthesis of dopamine dithiocarbamate functionalized gold nanoparticles for quantitative analysis of small molecules and phosphopeptides in SALDI- and MALDI-MS. Analyst 137:1629–1638

    Article  CAS  Google Scholar 

  87. Hasan N, Wu HF (2011) Highly selective and sensitive enrichment of phosphopeptides via NiO nanoparticles using a microwave-assisted centrifugation on-particle ionization/enrichment approach in MALDI-MS. Anal Bioanal Chem 400:3451–3462

    Article  CAS  Google Scholar 

  88. Hasan N, Wu HF, Li YH, Nawaz M (2010) Two-step on-particle ionization/enrichment via a washing- and separation-free approach: multifunctional TiO2 nanoparticles as desalting, accelerating, and affinity probes for microwave-assisted tryptic digestion of phosphoproteins in ESI-MS and MALDI-MS: comparison with microscale TiO2. Anal Bioanal Chem 396:2909–2919

    Article  CAS  Google Scholar 

  89. Kailasa SK, Wu HF (2012) Rapid enrichment of phosphopeptides by BaTiO3 nanoparticles after microwave-assisted tryptic digest of phosphoproteins, and their identification by MALDI-MS. Microchim Acta 179:83–90

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Fen Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kailasa, S.K., Wu, HF. Recent developments in nanoparticle-based MALDI mass spectrometric analysis of phosphoproteomes. Microchim Acta 181, 853–864 (2014). https://doi.org/10.1007/s00604-014-1191-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1191-z

Keywords

Navigation