Skip to main content
Log in

Immobilization of titanium dioxide/ions on magnetic microspheres for enhanced recognition and extraction of mono- and multi-phosphopeptides

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors are presenting a novel strategy for global phosphoproteome recognition in practical samples. It integrates metal oxide affinity chromatography (MOAC) and immobilization metal ion affinity chromatography (IMAC). This resulted in a kind of titanium dioxide/ion-based multifunctional probe (dubbed T2M). The T2M combines the features of MOAC and IMAC including their recognition preferences towards mono- and multi-phosphorylated peptides. Hence, they exhibit an outstanding recognition capability towards global phosphoproteome, high sensitivity (the limit of detection of which is merely 10 fmol) and excellent specificity in MALDI-TOF MS detection. Their performance is further demonstrated by the identification of the phosphoproteome in non-fat milk and human saliva. By combining T2M with nano LC-MS/MS, remarkable results are obtained in the tryptic digestion of healthy eye lens and cataract lens phosphoproteomes. A total of 658 and 162 phosphopeptides, respectively, were identified. This indicates that phosphorylation and the appearance of cataract can be related to each other.

Schematic presentation of the preparation of titanium dioxide/ion-based multifunctional magnetic nanomaterials (T2M). The T2M based enrichment protocol exhibits outstanding recognition capability towards global phosphoproteome. This protocol shows great prospect for clarifying mechanism of phosphorylation-related diseases via further information acquisition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127(3):635–648

    Article  CAS  Google Scholar 

  2. Wiseman RL, Kelly JW (2011) Phosphatase inhibition delays translational recovery. Science 332(6025):44–45

    Article  Google Scholar 

  3. Redpath NT, Price NT, Severinov KV, Proud CG (1993) Regulation of elongation factor-2 by multisite phosphorylation. Eur J Biochem 213(2):689–699

    Article  CAS  Google Scholar 

  4. Scott DB, Blanpied TA, Ehlers MD (2003) Coordinated PKA and PKC phosphorylation suppresses RXR-mediated ER retention and regulates the surface delivery of NMDA receptors. Neuropharmacology 45(6):755–767

    Article  CAS  Google Scholar 

  5. Vicente-Manzanares M, Horwitz AR (2010) Myosin light chain mono- and di-phosphorylation differentially regulate adhesion and polarity in migrating cells. Biochem Biophys Res Commun 402(3):537–542

    Article  CAS  Google Scholar 

  6. Deng X, Gao F, Flagg T, May WS (2004) Mono- and multisite phosphorylation enhances Bcl2's antiapoptotic function and inhibition of cell cycle entry functions. Proc Natl Acad Sci U S A 101:153–158

    Article  CAS  Google Scholar 

  7. Narasimha AM, Kaulich M, Shapiro GS, Choi YJ, Sicinski P, Dowdy SF (2014) Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. Elife 3

  8. Park K-S, Mohapatra DP, Misonou H, Trimmer JS (2006) Graded regulation of the Kv2.1 Potassium Channel by variable phosphorylation. Science 313:976–979

    Article  CAS  Google Scholar 

  9. Lee CW, Ferreon JC, Ferreon AC, Arai M, Wright PE (2010) Graded enhancement of p53 binding to CREB-binding protein (CBP) by multisite phosphorylation. Proc Natl Acad Sci U S A 107(45):19290–19295

    Article  CAS  Google Scholar 

  10. Long X-Y, Zhang Z-J, Li J-Y, Sheng D, Lian H-Z (2017) Controllable preparation of CuFeMnO4 Nanospheres as a novel multifunctional affinity probe for efficient adsorption and selective enrichment of low-abundance peptides and Phosphopeptides. Anal Chem 89(19):10446–10453

    Article  CAS  Google Scholar 

  11. Tan S, Wang J, Han Q, Liang Q, Ding M (2018) A porous graphene sorbent coated with titanium(IV)-functionalized polydopamine for selective lab-in-syringe extraction of phosphoproteins and phosphopeptides. Microchim Acta 185(7):316

    Article  Google Scholar 

  12. Zhang L, Gan Y, Sun H, Yu B, Jin X, Zhang R, Zhang W, Zhang L (2017) Magnetic mesoporous carbon composites incorporating hydrophilic metallic nanoparticles for enrichment of phosphopeptides prior to their determination by MALDI-TOF mass spectrometry. Microchim Acta 184(2):547–555

    Article  CAS  Google Scholar 

  13. Chen C-T, Chen Y-C (2005) Fe3O4/TiO2 Core/Shell nanoparticles as affinity probes for the analysis of Phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Anal Chem 77(18):5912–5919

    Article  CAS  Google Scholar 

  14. Kailasa SK, Wu H-F (2014) Recent developments in nanoparticle-based MALDI mass spectrometric analysis of phosphoproteomes. Microchim Acta 181(9):853–864

    Article  CAS  Google Scholar 

  15. Yue X, Schunter A, Hummon AB (2015) Comparing multistep immobilized metal affinity chromatography and multistep TiO2 methods for Phosphopeptide enrichment. Anal Chem 87(17):8837–8844

    Article  CAS  Google Scholar 

  16. Bodenmiller B, Mueller LN, Mueller M, Domon B, Aebersold R (2007) Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Methods 4(3):231–237

    Article  CAS  Google Scholar 

  17. Peng J, Zhang H, Li X, Liu S, Zhao X, Wu J, Kang X, Qin H, Pan Z, Ra W (2016) Dual-metal centered zirconium–organic framework: a metal-affinity probe for highly specific interaction with Phosphopeptides. ACS Appl Mater Interfaces 8(51):35012–35020

    Article  CAS  Google Scholar 

  18. Liu Q, Sun N, Gao M, Deng C-h (2018) Magnetic binary metal–organic framework as a novel affinity probe for highly selective capture of endogenous Phosphopeptides. ACS Sustain Chem Eng 6(3):4382–4389

    Article  CAS  Google Scholar 

  19. Thingholm TE, Jensen ON, Robinson PJ, Larsen MR (2008) SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics 7(4):661–671

    Article  CAS  Google Scholar 

  20. Long XY, Zhang ZJ, Li JY, Sheng D, Lian HZ (2017) A combination strategy using two novel cerium-based nanocomposite affinity probes for the selective enrichment of mono- and multi-phosphopeptides in mass spectrometric analysis. Chem Commun (Camb) 53(33):4620–4623

    Article  CAS  Google Scholar 

  21. Wang S-T, Wang M-Y, Su X, Yuan B-F, Feng Y-Q (2012) Facile preparation of SiO2/TiO2 composite monolithic capillary column and its application in enrichment of Phosphopeptides. Anal Chem 84(18):7763–7770

    Article  CAS  Google Scholar 

  22. Jiang J, Sun X, She X, Li J, Li Y, Deng C, Duan G (2018) Magnetic microspheres modified with Ti(IV) and Nb(V) for enrichment of phosphopeptides. Microchim Acta 185(6):309

    Article  Google Scholar 

  23. Wang J, Yao J, Sun N, Deng C (2017) Facile synthesis of thiol-polyethylene glycol functionalized magnetic titania nanomaterials for highly efficient enrichment of N-linked glycopeptides. J Chromatogr A 1512:1–8

    Article  CAS  Google Scholar 

  24. Yang X, Xia Y (2016) Urea-modified metal-organic framework of type MIL-101(Cr) for the preconcentration of phosphorylated peptides. Microchim Acta 183(7):2235–2240

    Article  CAS  Google Scholar 

  25. Shpitzer T, Hamzany Y, Bahar G, Feinmesser R, Savulescu D, Borovoi I, Gavish M, Nagler R (2009) Salivary analysis of oral cancer biomarkers. Brit J Cancer 101(7):1194

    Article  CAS  Google Scholar 

  26. Su J, He X, Chen L, Zhang Y (2018) Adenosine phosphate functionalized magnetic mesoporous graphene oxide nanocomposite for highly selective enrichment of Phosphopeptides. ACS Sustain Chem Eng 6(2):2188–2196

    Article  CAS  Google Scholar 

  27. Lin H, Deng C (2016) Development of immobilized Sn4+ affinity chromatography material for highly selective enrichment of phosphopeptides. Proteomics 16(21):2733–2741

  28. Matsuyama M, Tanaka H, Inoko A, Goto H, Yonemura S, Kobori K, Hayashi Y, Kondo E, Itohara S, Izawa I, Inagaki M (2013) Defect of mitotic vimentin phosphorylation causes Microophthalmia and cataract via aneuploidy and senescence in Lens epithelial cells. J Biol Chem 288(50):35626–35635

    Article  CAS  Google Scholar 

  29. Niceta M, Stellacci E, Gripp Karen W, Zampino G, Kousi M, Anselmi M, Traversa A, Ciolfi A, Stabley D, Bruselles A, Caputo V, Cecchetti S, Prudente S, Fiorenza Maria T, Boitani C, Philip N, Niyazov D, Leoni C, Nakane T, Keppler-Noreuil K, Braddock Stephen R, Gillessen-Kaesbach G, Palleschi A, Campeau Philippe M, Lee Brendan HL, Pouponnot C, Stella L, Bocchinfuso G, Katsanis N, Sol-Church K, Tartaglia M (2015) Mutations impairing GSK3-mediated MAF phosphorylation cause cataract, deafness, intellectual disability, seizures, and a down syndrome-like facies. Am J Hum Genet 96(5):816–825

    Article  CAS  Google Scholar 

  30. Aquilina JA, Benesch JLP, Ding LL, Yaron O, Horwitz J, Robinson CV (2004) Phosphorylation of alpha B-crystallin alters chaperone function through loss of dimeric substructure. J Biol Chem 279(27):28675–28680

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Key R&D Program of China (2018YFA0507501) and the National Natural Science Foundation of China (21425518).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nianrong Sun or Chunhui Deng.

Ethics declarations

The author(s) declare that they have no competing interests.

All the experiments were performed in compliance with the relevant laws and institutional guidelines, conducted according to the Declaration of Helsinki and approved by the Ethics Committee of Fudan University.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 4838 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, Z., Sun, N. et al. Immobilization of titanium dioxide/ions on magnetic microspheres for enhanced recognition and extraction of mono- and multi-phosphopeptides. Microchim Acta 186, 236 (2019). https://doi.org/10.1007/s00604-019-3346-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3346-4

Keywords

Navigation