Skip to main content
Log in

Quantum dot induced phototransformation of 2,4-dichlorophenol, and its subsequent chemiluminescence reaction

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have studied the CdTe quantum dot-induced phototransformation of 2,4-dichlorophenol (2,4-DCP) and its subsequent chemiluminescence (CL) reaction. Quantum dots (QDs) of different size and capped with thioglycolic acid were prepared and characterized by molecular spectroscopy, X-ray diffraction and transmission electron microscopy. In the presence of QDs, 2,4-DCP is photochemically transformed into a long-living light emitting precursor which can react with N-bromosuccinimide to produce CL with peak wavelengths at 475 and 550 nm. The formation of singlet oxygen during the phototransformation process was confirmed by the enhancement effect of deuterium oxide on the CL reaction and the change in the UV spectrum of a chemical trap. The CL intensity is linearly related to the concentration of 2,4-DCP in the range from 0.36 to 36 μmol L−1, and the detection limit (at 3σ) is 0.13 μmol L−1.

CdTe QDs as an alternative photosensitizer that can be applied to the phototransformation/CL detection of 2, 4-DCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Smith AM, Nie SM (2004) Chemical analysis and cellular imaging with quantum dots. Analyst 129:672–677

    Article  CAS  Google Scholar 

  2. Sapsford KE, Pons T, Medintz IL, Mattoussi H (2006) Biosensing with luminescent semiconductor quantum dots. Sensors 6:925–953

    Article  CAS  Google Scholar 

  3. Chan WCW, Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  CAS  Google Scholar 

  4. Bruchez MJ, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  CAS  Google Scholar 

  5. Coe S, Woo W, Bawendi M, Bulović V (2002) Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420:800–803

    Article  CAS  Google Scholar 

  6. Hansen JA, Wang J, Kawde A, Xiang Y, Gothelf KV, Gollins G (2006) Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J Am Chem Soc 128:2228–2229

    Article  CAS  Google Scholar 

  7. Ding ZF, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ (2002) Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296:1293–1297

    Article  CAS  Google Scholar 

  8. Huang XY, Li L, Qian HF, Dong CQ, Ren JC (2006) A resonance energy transfer between chemiluminescence donors and luminescent quantum dots as acceptors (CRET). Angew Chem Int Ed 45:5140–5143

    Article  CAS  Google Scholar 

  9. Wang ZP, Li J, Liu B, Hu JQ, Yao X, Li JH (2005) Chemiluminescence of CdTe nanocrystals induced by direct chemical oxidation and its size-dependent and surfactant-sensitized effect. J Phys Chem B 109:23304–23311

    Article  CAS  Google Scholar 

  10. Guo JZ, Cui H (2007) Lucigenin chemiluminescence induced by noble metal nanoparticles in the presence of adsorbates. J Phys Chem C 111:12254–12259

    Article  CAS  Google Scholar 

  11. Guo JZ, Cui H, Zhou W, Wang W (2008) Ag nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide. J Photochem Photobiol A Chem 193:89–96

    Article  CAS  Google Scholar 

  12. Li YX, Yang P, Wang P, Huang X, Wang L (2007) CdS nanocrystal induced chemiluminescence: reaction mechanism and applications. Nanotechnology 18:225602–225609

    Article  Google Scholar 

  13. Li Z, Wang YX, Zhang GX, Xu WB, Han YJ (2010) Chemiluminescence resonance energy transfer in the luminol-CdTe quantum dots conjugates. J Lumin 130:995–999

    Article  CAS  Google Scholar 

  14. Sun CY, Liu B, Li JH (2008) Sensitized chemiluminescence of CdTe quantum-dots on Ce(IV)-sulfite and its analytical applications. Talanta 75:447–454

    Article  CAS  Google Scholar 

  15. Chen H, Lin L, Lin Z, Guo GS, Lin JM (2010) Chemiluminescence arising from the decomposition of peroxymonocarbonate and enhanced by CdTe quantum dots. J Phys Chem A 114:10049–10058

    Article  CAS  Google Scholar 

  16. García-Campaňa AM, Baeyens WRG (2001) Chemiluminescence in analytical chemistry. Marcel Dekker, New York

    Google Scholar 

  17. Kanwal S, Fu XH, Su XG (2010) Size dependent active effect of CdTe quantum dots on pyrogallol-H2O2 chemiluminescence system for chromium (III) detection. Microchim Acta 169:167–172

    Article  CAS  Google Scholar 

  18. Feng QZ, Li HF, Zhang ZY, Lin JM (2011) Gold nanoparticles for enhanced chemiluminescence and determination of 2,4-dichlorophenol in environmental water samples. Analyst 136:2156–2160

    Article  CAS  Google Scholar 

  19. Li SF, Tao SJ, Wang FF, Hong JG, Wei XW (2010) Chemiluminescence reactions of luminol system catalyzed by nanoparticles of a gold/silver alloy. Microchim Acta 169:73–78

    Article  CAS  Google Scholar 

  20. Albert-García JR, Icardo MC, Calatayud JM (2006) Analytical strategy photodegradation/chemiluminescence/continuous-flow multicommutation methodology for the determination of the herbicide propanil. Talanta 69:608–614

    Article  Google Scholar 

  21. Palomeque M, García Bautista JA, Catalá Icardo M, García Mateo JV, Martínez Calatayud J (2004) Photochemical-chemiluminometric determination of aldicarb in a fully automated multicommutation based flow-assembly. Anal Chim Acta 512:149–156

    Article  CAS  Google Scholar 

  22. Chivulescu A, Catalá-Icardo M, García Mateo JV, Martínez Calatayud J (2004) New flow-multicommutation method for the photo-chemiluminometric determination of the carbamate pesticide asulam. Anal Chim Acta 519:113–120

    Article  CAS  Google Scholar 

  23. Song SJ, Song QJ, Chen ZL (2007) Online phototransformation-flow injection chemiluminescence determination of triclosan. Anal Bioanal Chem 387:2917–2922

    Article  CAS  Google Scholar 

  24. Zhang JL, Song QJ, Hu X, Zhang EH, Gao H (2008) Dye–sensitized phototransformation of chlorophenols and their subsequent chemiluminescence reactions. J Lumin 128:1880–1885

    Article  CAS  Google Scholar 

  25. Huang SS, Qu YX, Li RN, Shen J, Zhu LW (2008) Biosensor based on horseradish peroxide modified carbon nanotubes for determination of 2,4-dichlorophenol. Microchim Acta 162:261–268

    Article  CAS  Google Scholar 

  26. Kong LM, Huang SS, Yue ZL, Peng B, Li MY, Zhang J (2009) Sensitive mediator-free tyrosinase biosensor for the determination of 2,4-dichlorophenol. Microchim Acta 165:203–209

    Article  CAS  Google Scholar 

  27. Yaghini E, Seifalian AM, MacRobert AJ (2009) Quantum dots and their potential biomedical application in photosensitization for photodynamic therapy. Nanomedicine 4:353–363

    Article  CAS  Google Scholar 

  28. Bang JH, Kamat PV (2009) Quantum dots sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano 3:1467–1476

    Article  CAS  Google Scholar 

  29. Nardello V, Azaroual N, Cervoise I, Vermeersch G, Aubry JM (1996) Synthesis and photooxidation of sodium 1,3-cyclohexadiene-1,4-diethanoate:a new colorless and water-soluble trap of singlet oxygen. Tetrahedron 52:2031–2046

    Article  CAS  Google Scholar 

  30. Yu WW, Qu LH, Guo WZ, Peng XG (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860

    Article  CAS  Google Scholar 

  31. Adam W, Kazakov DV, Kazakov VP (2005) Singlet-oxygen chemiluminescence in peroxide reactions. Chem Rev 105:3371–3387

    Article  CAS  Google Scholar 

  32. Suzuki N, Takahashi A, Mashika S, Mizumoto I, Inaba H (1990) N, N’-dibromo-5,5-dimethylhydantoin and N-bromosuccinimide, chemical source of singlet molecular oxygen: observation of singlet oxygen with ultra-sensitive near-infraed chemiluminescence spectroscopy. Agric Biol Chem 54:459–462

    Article  CAS  Google Scholar 

  33. Samia ACS, Chen XB, Burda C (2003) Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 125:15736–15737

    Article  CAS  Google Scholar 

  34. Ma J, Chen JY, Zhang Y, Wang PN, Guo J, Yang WL, Wang CC (2007) Photochemical instability of thiol-capped CdTe quantum dots in aqueous solution and living cells: process and mechanism. J Phys Chem B 111:12012–12016

    Article  CAS  Google Scholar 

  35. Cho SJ, Maysinger D, Jain M, Röder B, Hackbarth S, Winnik FM (2007) Long—term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 23:1974–1980

    Article  CAS  Google Scholar 

  36. Merkel PB, Nilsson R, Kearns DR (1972) Deuterium effects on singlet oxygen lifetimes in solutions. New test of singlet oxygen reactions. J Am Chem Soc 94:1030–1031

    Article  CAS  Google Scholar 

  37. Liu JX, Chen H, Lin L, Lu C, Lin JM (2010) Sensitized chemiluminescence reaction between hydrogen peroxide and periodate of different types of Mn-doped ZnS quantum dots. Chin Sci Bull 55:3479–3484

    Article  CAS  Google Scholar 

  38. Liu JX, Chen H, Lin Z, Lin JM (2010) Preparation of surface imprinting polymer capped Mn-doped ZnS quantum dots and their application for chemiluminescence detection of 4-nitrophenol in tap water. Anal Chem 82:7380–7386

    Article  CAS  Google Scholar 

  39. Matsui J, Akamatsu K, Nishigushi S, Miyoshi D, Nawafune H, Tamaki K, Sugimoto N (2004) Composite of Au nanoparticles and molecularly imprinted polymer as a sensing material. Anal Chem 76:1310–1315

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (No. 20977042, 21175060), the Doctor Candidate Foundation of Jiangnan Unversity (No. JUDCF09009), the Rearing Fund for the Excellent Doctoral Dissertation of Jiangnan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qijun Song.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, H., Ding, Z., Peng, M. et al. Quantum dot induced phototransformation of 2,4-dichlorophenol, and its subsequent chemiluminescence reaction. Microchim Acta 178, 203–210 (2012). https://doi.org/10.1007/s00604-012-0830-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0830-5

Keywords

Navigation