Skip to main content
Log in

Silver–gold core-shell nanoparticles containing methylene blue as SERS labels for probing and imaging of live cells

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on silver–gold core-shell nanostructures that contain Methylene Blue (MB) at the gold–silver interface. They can be used as reporter molecules in surface-enhanced Raman scattering (SERS) labels. The labels are stable and have strong SERS activity. TEM imaging revealed that these nanoparticles display bright and dark stripe structures. In addition, these labels can act as probes that can be detected and imaged through the specific Raman signatures of the reporters. We show that such SERS probes can identify cellular structures due to enhanced Raman spectra of intrinsic cellular molecules measured in the local optical fields of the core-shell nanostructures. They also provide structural information on the cellular environment as demonstrated for these nanoparticles as new SERS-active and biocompatible substrates for imaging of live cells.

The synthesis of MB embedded Ag/Au CS NPs ,and the results of these NPs were used in probing and imaging live cells as SERS labels

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cui Y, Ren B, Yao JL, Gu RA, Tian ZQ (2006) Synthesis of Ag core Au shell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy. J Phys Chem B 110(9):4002–4006. doi:10.1021/Jp056203x

    Article  CAS  Google Scholar 

  2. Docherty FT, Clark M, McNay G, Graham D, Smith WE (2004) Multiple labelled nanoparticles for bio detection. Faraday Discuss 126:281–288, discussion 303–211

    Article  CAS  Google Scholar 

  3. Zhang L, Shi HW, Wang C, Zhang KY (2011) Preparation of a nanocomposite film from poly(diallydimethyl ammonium chloride) and gold nanoparticles by in-situ electrochemical reduction, and its application to SERS spectroscopy and sensing of ascorbic acid. Microchim Acta 173(3–4):401–406. doi:10.1007/s00604-011-0571-x

    Article  CAS  Google Scholar 

  4. Yeo BS, Schmid T, Zhang WH, Zenobi R (2007) Towards rapid nanoscale chemical analysis using tip-enhanced Raman spectroscopy with Ag-coated dielectric tips. Anal Bioanal Chem 387(8):2655–2662. doi:10.1007/s00216-007-1165-7

    Article  CAS  Google Scholar 

  5. Kumar GVP, Shruthi S, Vibha B, Reddy BAA, Kundu TK, Narayana C (2007) Hot spots in Ag core-Au shell nanoparticles potent for surface-enhanced Raman scattering studies of biomolecules. J Phys Chem C 111(11):4388–4392. doi:10.1021/Jp068253n

    Article  CAS  Google Scholar 

  6. Xie W, Qiu P, Mao C (2011) Bio-imaging, detection and analysis by using nanostructures as SERS substrates. J Mater Chem 21(14):5190–5202

    Article  CAS  Google Scholar 

  7. Lee S, Kim S, Choo J, Shin SY, Lee YH, Choi HY, Ha SH, Kang KH, Oh CH (2007) Biological imaging of HEK293 cells expressing PLC gamma 1 using surface-enhanced Raman microscopy. Anal Chem 79(3):916–922. doi:10.1021/Ac061246a

    Article  CAS  Google Scholar 

  8. Saunders AE, Popov I, Banin U (2006) Synthesis of hybrid CdS-Au colloidal nanostructures. J Phys Chem B 110(50):25421–25429. doi:10.1021/Jp065594s

    Article  CAS  Google Scholar 

  9. Hu JW, Zhang Y, Li JF, Liu Z, Ren B, Sun SG, Tian ZQ, Lian T (2005) Synthesis of Au@Pd core-shell nanoparticles with controllable size and their application in surface-enhanced Raman spectroscopy. Chem Phys Lett 408(4–6):354–359. doi:10.1016/j.cplett.2005.04.071

    Article  CAS  Google Scholar 

  10. Kamata K, Lu Y, Xia YN (2003) Synthesis and characterization of monodispersed core-shell spherical colloids with movable cores. J Am Chem Soc 125. doi:10.1021/Ja0292849

  11. Ung T, Liz-Marzan LM, Mulvaney P (1999) Redox catalysis using Ag@SiO2 colloids. J Phys Chem B 103(32):6770–6773

    Article  CAS  Google Scholar 

  12. Luo ZH, Chen K, Lu DL, Han HY, Zou MQ (2011) Synthesis of p-aminothiophenol-embedded gold/silver core-shell nanostructures as novel SERS tags for biosensing applications. Microchim Acta 173(1–2):149–156. doi:10.1007/s00604-010-0537-4

    Article  CAS  Google Scholar 

  13. Sirimuthu NMS, Syme CD, Cooper JM (2010) Monitoring the uptake and redistribution of metal nanoparticles during cell culture using surface-enhanced Raman scattering spectroscopy. Anal Chem 82(17):7369–7373. doi:10.1021/Ac101480t

    Article  CAS  Google Scholar 

  14. Kneipp J, Kneipp H, Wittig B, Kneipp K (2010) Novel optical nanosensors for probing and imaging live cells. Nanomedicine-Uk 6(2):214–226. doi:10.1016/j.nano.2009.07.009

    CAS  Google Scholar 

  15. Lucas L, Chen XK, Smith A, Korbelik M, Zeng H, Lee PWK, Hewitt KC (2009) Imaging EGFR distribution using surface enhanced Raman spectroscopy. Proc Soc Photo-Opt Ins 7192:–188. doi:10.1117/12.808337

  16. Luo Z, Fu T, Chen K, Han H, Zou M (2011) Synthesis of multi-branched gold nanoparticles by reduction of tetrachloroauric acid with Tris base, and their application to SERS and cellular imaging. Microchim Acta 175(1–2):55–61. doi:10.1007/s00604-011-0649-5

    CAS  Google Scholar 

  17. Doering WE, Piotti ME, Natan MJ, Freeman RG (2007) SERS as a foundation for nanoscale, optically detected biological labels. Adv Mater 19(20):3100–3108. doi:10.1002/adma.200701984

    Article  CAS  Google Scholar 

  18. Qian XM, Nie SM (2008) Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev 37(5):912–920

    Article  CAS  Google Scholar 

  19. Kneipp J (2006) Nanosensors based on SERS for applications in living cells surface-enhanced Raman scattering. In: Kneipp K, Moskovits M, Kneipp H (eds) Topics in applied physics, vol 103. Springer, Berlin, pp 335–349. doi:10.1007/3-540-33567-6_17

    Google Scholar 

  20. Kneipp J, Kneipp H, Rice WL, Kneipp K (2005) Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles. Anal Chem 77(8):2381–2385. doi:10.1021/ac050109v

    Article  CAS  Google Scholar 

  21. Kneipp J, Kneipp H, Rajadurai A, Redmond RW, Kneipp K (2009) Optical probing and imaging of live cells using SERS labels. J Raman Spectrosc 40(1):1–5. doi:10.1002/jrs.2060

    Article  CAS  Google Scholar 

  22. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86(17):3391–3395. doi:10.1021/j100214a025

    Article  CAS  Google Scholar 

  23. Xiao G-N, Man S-Q (2007) Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped silver nanoparticles. Chem Phys Lett 447(4–6):305–309. doi:10.1016/j.cplett.2007.09.045

    Article  CAS  Google Scholar 

  24. Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 330(3):377–445. doi:10.1002/andp.19083300302

    Article  Google Scholar 

  25. Han XX, Xie Y, Zhao B, Ozaki Y (2010) Highly sensitive protein concentration assay over a wide range via surface-enhanced Raman scattering of Coomassie Brilliant Blue. Anal Chem 82(11):4325–4328. doi:10.1021/ac100596u

    Article  CAS  Google Scholar 

  26. Bell SEJ, Sirimuthu NMS (2008) Quantitative surface-enhanced Raman spectroscopy. Chem Soc Rev 37(5):1012. doi:10.1039/b705965p

    Article  CAS  Google Scholar 

  27. Kneipp K, Haka AS, Kneipp H, Badizadegan K, Yoshizawa N, Boone C, Shafer-Peltier KE, Motz JT, Dasari RR, Feld MS (2002) Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles. Appl Spectrosc 56(2):150–154

    Article  CAS  Google Scholar 

  28. Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K (2006) In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Lett 6(10):2225–2231. doi:10.1021/nl061517x

    Article  CAS  Google Scholar 

  29. Lu Y, Jiao R, Chen X, Zhong J, Ji J, Shen P (2008) Methylene blue-mediated photodynamic therapy induces mitochondria-dependent apoptosis in HeLa Cell. J Cell Biochem 105(6):1451–1460. doi:10.1002/jcb.21965

    Article  CAS  Google Scholar 

  30. Khdair A, Gerard B, Handa H, Mao G, Shekhar MPV, Panyam J (2008) Surfactant−polymer nanoparticles enhance the effectiveness of anticancer photodynamic therapy. Mol Pharm 5(5):795–807. doi:10.1021/mp800026t

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No.60778047), the Natural Science Foundation of Guangdong Province of China (Grant No. 9251063101000009), Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20114407110001),the cooperation project in industry, education and research of Guangdong province and Ministry of Education of P.R.China (Grant No. 2011A090200011) and the Key Science and Technology Project of Guangzhou City of China (Grant No. 2008Z1-D391).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouyi Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, X., Guo, Z., Jin, Y. et al. Silver–gold core-shell nanoparticles containing methylene blue as SERS labels for probing and imaging of live cells. Microchim Acta 178, 229–236 (2012). https://doi.org/10.1007/s00604-012-0829-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0829-y

Keywords

Navigation