Skip to main content
Log in

Towards rapid nanoscale chemical analysis using tip-enhanced Raman spectroscopy with Ag-coated dielectric tips

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The influence of dielectric substrates on the Raman scattering activities of Ag overlayers has been investigated. Materials with low refractive indices, such as SiO2, SiOx and AlF3, were found to provide suitable supporting platforms for Ag films to give strong surface-enhanced Raman scattering for dye molecules when illuminated at 488 nm. This finding was then extended to tip-enhanced Raman scattering (TERS). Huge enhancements of 70–80×, corresponding to net enhancements of >104, were observed for brilliant cresyl blue test analyte when Ag-coated tips made from or precoated with low refractive index materials were applied. The yield of fabricated tips that significantly enhance the Raman signals was found to be close to 100%. These findings provide crucial steps towards the use of TERS as a robust technique for rapid chemical imaging with nanometer spatial resolution.

Silver-coated dielectric tips for tip-enhanced Raman scattering (TERS) are capable of more than 10,000-fold enhancement

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–c
Fig. 3
Fig. 4a–e
Fig. 5a–d
Fig. 6a, b

Similar content being viewed by others

References

  1. Stöckle RM, Suh YD, Deckert V, Zenobi R (2000) Chem Phys Lett 318:131–136

    Article  Google Scholar 

  2. Anderson N, Anger P, Hartschuh A, Novotny L (2006) Nano Lett 6:744–749

    Article  CAS  Google Scholar 

  3. Kikteva T, Star D, Zhao ZH, Baisley TL, Leach GW (1999) J Phys Chem B 103:1124–1133

    Article  CAS  Google Scholar 

  4. Vannier C, Yeo BS, Melanson JE, Zenobi R (2006) Rev Sci Instrum 77:023104

    Article  Google Scholar 

  5. Yeo BS, Zhang W, Vannier C, Zenobi R (2006) Appl Spectrosc 60:1142–1147

    Article  CAS  Google Scholar 

  6. Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2000) Opt Comm 183:333–336

    Article  CAS  Google Scholar 

  7. Wang JJ, Saito Y, Batchelder DN, Kirkham J, Robinson C, Smith DA (2005) Appl Phys Lett 86:263111

    Article  Google Scholar 

  8. Pan DH, Klymyshyn N, Hu DH, Lu HP (2006) Appl Phys Lett 88:093121

    Article  Google Scholar 

  9. Rasmussen A, Deckert V (2006) J Raman Spectrosc 37:311–317

    Article  CAS  Google Scholar 

  10. Neugebauer U, Rosch P, Schmitt M, Popp J, Julien C, Rasmussen A, Budich C, Deckert V (2006) Chemphyschem 7:1428–1430

    Article  CAS  Google Scholar 

  11. Stöckle RM, Deckert V, Fokas C, Zenobi R (2000) Appl Spectrosc 54:1577–1583

    Article  Google Scholar 

  12. Schatz GC, Van Duyne RP (2002) In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy. Wiley, New York, pp 759–774

    Google Scholar 

  13. Campion A, Kambhampati P (1998) Chem Soc Rev 27:241–250

    Article  CAS  Google Scholar 

  14. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (2002) J Phys–Condens Mat 14:R597–R624

    Article  CAS  Google Scholar 

  15. Emory SR, Haskins WE, Nie SM (1998) J Am Chem Soc 120:8009–8010

    Article  CAS  Google Scholar 

  16. Richards D, Milner RG, Huang F, Festy F (2003) J Raman Spectrosc 34:663–667

    Article  CAS  Google Scholar 

  17. Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2001) Chem Phys Lett 335:369–374

    Article  CAS  Google Scholar 

  18. Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) J Chem Phys 116:6755–6759

    Article  CAS  Google Scholar 

  19. Dieringer JA, McFarland AD, Shah NC, Stuart DA, Whitney AV, Yonzon CR, Young MA, Zhang XY, Van Duyne RP (2006) Faraday Discuss 132:9–26

    Article  CAS  Google Scholar 

  20. Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP (2001) J Phys Chem B 105:2343–2350

    Article  CAS  Google Scholar 

  21. Xu G, Tazawa M, Jin P, Nakao S (2005) Appl Phys A 80:1535–1540

    Article  CAS  Google Scholar 

  22. Xu G, Tazawa M, Jin P, Nakao S, Yoshimura K (2003) Appl Phys Lett 82:3811–3813

    Article  CAS  Google Scholar 

  23. Philipp HR (1985) In: Palik ED (ed) Handbook of optical constants of solids, 1st edn. Academic, London, pp 765–769

    Google Scholar 

  24. Schneider S, Brehm G, Freunscht P (1995) Phys Status Solidi B 189:37–42

    Article  CAS  Google Scholar 

  25. Pettinger B, Picardi G, Schuster R, Ertl G (2002) Single Mol 3:285–294

    Article  CAS  Google Scholar 

  26. Saito Y, Wang JJ, Batchelder DN, Smith DA (2003) Langmuir 19:6857–6861

    Article  CAS  Google Scholar 

  27. Norrod KL, Rowlen KL (1998) Anal Chem 70:4218–4221

    Article  CAS  Google Scholar 

  28. Li M, Lin YC, Wu CC, Liu HS (2005) Nucl Acids Res 33:e184

    Article  Google Scholar 

  29. Schlegel VL, Cotton TM (1991) Anal Chem 63:241–247

    Article  CAS  Google Scholar 

  30. Heitmann W (1970) Thin Solid Films 5:61–67

    Article  CAS  Google Scholar 

  31. Bradford AP, Hass G, McFarlan M, Ritter E (1965) Appl Opt 4:971–976

    Article  CAS  Google Scholar 

  32. Cohen LF, Brown R, Milton MJT, Smith WE (eds) (2006) Faraday Discuss 132:1–340

  33. Domke KF, Zhang D, Pettinger B (2006) J Am Chem Soc 128:14721–14727

    Article  CAS  Google Scholar 

  34. Neacsu CC, Dreyer J, Behr N, Raschke MB (2006) Phys Rev B 73:193406

    Article  Google Scholar 

  35. Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2002) J Chem Phys 117:1296–1301

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Electron Microscopy Center at ETH Zürich (EMEZ), and Frank Krumeich for performing the SEM analyses as well as Urs Stauffer and Laure Aeschimann (University of Neuchâtel) for supplying the SiO2 AFM probes. We would also like to acknowledge the Gebert–Rüf Foundation (grant nr. P-085/03) and Deutsche Forschungsgemeinschaft (TS) for financial support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Zenobi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeo, BS., Schmid, T., Zhang, W. et al. Towards rapid nanoscale chemical analysis using tip-enhanced Raman spectroscopy with Ag-coated dielectric tips. Anal Bioanal Chem 387, 2655–2662 (2007). https://doi.org/10.1007/s00216-007-1165-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1165-7

Keywords

Navigation