Skip to main content
Log in

Amperometric hydrogen peroxide biosensor based on a glassy carbon electrode modified with polythionine and gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a novel hydrogen peroxide biosensor that was fabricated by the layer-by-layer deposition method. Thionine was first deposited on a glassy carbon electrode by two-step electropolymerization to form a positively charged surface. The negatively charged gold nanoparticles and positively charged horseradish peroxidase were then immobilized onto the electrode via electrostatic adsorption. The sequential deposition process was characterized using electrochemical impedance spectroscopy by monitoring the impedance change of the electrode surface during the construction process. The electrochemical behaviour of the modified electrode and its response to hydrogen peroxide were studied by cyclic voltammetry. The effects of the experimental variables on the amperometric determination of H2O2 such as solution pH and applied potential were investigated for optimum analytical performance. Under the optimized conditions, the biosensor exhibited linear response to H2O2 in the concentration ranges from 0.20 to 1.6 mM and 1.6 to 4.0 mM, with a detection limit of 0.067 mM (at an S/N of 3). In addition, the stability and reproducibility of this biosensor was also evaluated and gave satisfactory results.

A novel hydrogen peroxide biosensor was fabricated via layer-by-layer depositing approach. Thionine was first deposited on a glassy carbon electrode by electropolymerization to form a positively charged surface (PTH). Negatively charged gold nanoparticles (NPs) and positively charged horseradish peroxidase (HRP) were then immobilized onto the electrode via electrostatic adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang L, Wang EK (2004) A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode. Electrochem Commun 6:225

    Article  CAS  Google Scholar 

  2. Luo FB, Yin J, Gao F, Wang L (2009) A non-enzyme hydrogen peroxide sensor based on core/shell silica nanoparticles using synchronous fluorescence spectroscopy. Microchim Acta 165:23

    Article  CAS  Google Scholar 

  3. Stlgbrand M, Pontéh E, Irgum K (1994) 1, l′-Oxalyldiimidazole as chemiluminescence the determination of low hydrogen peroxide concentrations by flow injection analysis. Anal Chem 66:1766

    Article  Google Scholar 

  4. Klassen NV, Marchlngton M, McGowan HCE (1994) H2O2 determination by the I 3 method and by KMnO4 titration. Anal Chem 66:2921

    Article  CAS  Google Scholar 

  5. Razmi H, Mohammad-Rezaei R (2010) Non-enzymatic hydrogen peroxide sensor using an electrode modified with iron pentacyanonitrosylferrate nanoparticles. Microchim Acta 171:257

    Article  CAS  Google Scholar 

  6. Guo CX, Hu FP, Li CM, Shen PK (2008) Direct electrochemistry of hemoglobin on carbonized titania nanotubes and its application in a sensitive reagentless hydrogen peroxide biosensor. Biosens Bioelectron 24:819

    Article  CAS  Google Scholar 

  7. Mubarak A, Muhammad NT, Zuzanna S, Reinhard N, Wolfgang T, Ensinger W (2011) Hydrogen peroxide sensing with horseradish peroxidase-modified polymer single conical nanochannels. Anal Chem 83:1673

    Article  Google Scholar 

  8. Zhang JD, Oyama M (2004) A hydrogen peroxide sensor based on the peroxidase activity of hemoglobin immobilized on gold nanoparticles-modified ITO electrode. Electrochim Acta 50:85

    Article  CAS  Google Scholar 

  9. Gorton L, Lindgren A, Larsson T, Munteanu FD, Ruzgas T, Gazaryan I (1999) Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors. Anal Chim Acta 400:91

    Article  CAS  Google Scholar 

  10. Liu Y, Yuan R, Chai YQ, Tang DP, Dai JY, Zhong X (2006) Direct electrochemistry of horseradish peroxidase immobilized on gold colloid/cysteine/nafion-modified platinum disk electrode. Sensor Actuat B Chem 115:109

    Article  Google Scholar 

  11. Tang H, Chen JH, Yao SZ, Nie LH, Deng GH (2004) Amperometric glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle- modified carbon nanotube electrode. Anal Biochem 331:89

    CAS  Google Scholar 

  12. Lai GS, Zhang HL, Han DY (2009) Amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase by carbon-coated iron nanoparticles in combination with chitosan and cross-linking of glutaraldehyde. Microchim Acta 165:159

    Article  CAS  Google Scholar 

  13. Zhang SX, Wang N, Yu HJ, Niu YM, Sun CQ (2005) Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor. Bioelectrochem 67:15

    Article  CAS  Google Scholar 

  14. Chut SL, Li J, Tan SN (1997) Reagentless amperometric determination of hydrogen peroxide by silica sol–gel modified biosensor. Analyst 122:1431

    Article  CAS  Google Scholar 

  15. Wu BY, Hou SH, Yin F, Zhao ZX (2007) Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode. Biosens Bioelectron 22:2854

    Article  CAS  Google Scholar 

  16. Wang YD, Joshi PP, Hobbs KL, Johnson MB, Schmidtke DW (2006) Nanostructured biosensors built by layer-by-layer electrostatic assembly of enzyme-coated single-walled carbon nanotubes and redox polymers. Langmuir 22:9776

    Article  CAS  Google Scholar 

  17. Zhao HT, Ju HX (2006) Multilayer membranes for glucose biosensing via layer-by-layer assembly of multiwall carbon nanotubes and glucose oxidase. Anal Biochem 350:138

    Article  CAS  Google Scholar 

  18. Liu Y, Geng TM, Gao J (2008) Layer-by-layer immobilization of horseradish peroxidase on a gold electrode modified with colloidal gold nanoparticles. Microchim Acta 161:241

    Article  CAS  Google Scholar 

  19. Uygun A (2009) DNA hybridization electrochemical biosensor using a functionalized polythiophene. Talanta 79:194

    Article  CAS  Google Scholar 

  20. Shirsat MD, Too CO, Wallace GG (2008) Amperometric glucose biosensor on layer by layer assembled carbon nanotube and polypyrrole multilayer film. Electroanal 20:150

    Article  CAS  Google Scholar 

  21. Li QW, Zhang J, Yan H, He MS, Liu ZF (2004) Thionine-mediated chemistry of carbon nanotubes. Carbon 42:287

    Article  CAS  Google Scholar 

  22. Bauldreay JM, Archer MD (1983) Dye-modified electrodes for photogalvanic cells. Electrochim Acta 28:1515

    Article  CAS  Google Scholar 

  23. Zhang KY, Zhang L, Xu JK, Wang C, Geng T, Wang HY, Zhu J (2010) A sensitive amperometric hydrogen peroxide sensor based on thionin/EDTA/carbon nanotubes—chitosan composite film modified electrode. Microchim Acta 171:139

    Article  Google Scholar 

  24. Liu Y, Zhang HL, Lai GS, Yu AM, Huang YM, Han DY (2010) Amperometric NADH biosensor based on magnetic chitosan microspheres/poly(thionine) modified glassy carbon electrode. Electroanal 22:1725

    Article  CAS  Google Scholar 

  25. Wu BY, Hou SH, Yin F, Li J, Zhao ZX, Huang JD, Chen Q (2007) Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode. Biosens Bioelectron 22:838

    Article  CAS  Google Scholar 

  26. Zhang HL, Lai GS, Han DY, Yu AM (2008) An amperometric hydrogen peroxide biosensor based on horseradish peroxidase immobilized on magnetic dextran microspheres modified electrode. Anal Bioanal Chem 390:971

    Article  CAS  Google Scholar 

  27. Wang YH, Gu HY (2009) Hemoglobin co-immobilized with silversilver oxide nanoparticles on a bare silver electrode for hydrogen peroxide electroanalysis. Microchim Acta 164:41

    Article  CAS  Google Scholar 

  28. Jia JB (2008) Hydrogen peroxide biosensor based on horseradish peroxidaseAu nanoparticles at a viologen grafted glassy carbon electrode. Microchim Acta 163:237

    Article  CAS  Google Scholar 

  29. Pumera M, Sánchez S, Ichinose I, Tang J (2007) Electrochemical nanobiosensors. Sensor Actuat B Chem 123:1195

    Article  Google Scholar 

  30. Crumbliss AL, Perine SC, Stonehuerner J, Twbergen RK, Zhao J, Henkens RW, O’Daly JP (1992) Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition. Biotechnol Bioeng 40:483

    Article  CAS  Google Scholar 

  31. Crumbliss AL, Stonehuerner JG, Henkens RW, O’Daly JP, Zhao J (1994) The use of inorganic materlals to control or maintain immobilized enzyme activity. New J Chem 18:327

    CAS  Google Scholar 

  32. Zhao J, Stonehuerner J, O’Daly JP, Henkens RW, Crumbliss AL (1996) A xanthine oxidase/colloidal gold enzyme electrode for amperometric biosensor applications. Biosens Bioelectron 11:493

    Article  CAS  Google Scholar 

  33. Xiao Y, Ju HX, Chen HY (1999) Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer. Anal Chim Acta 391:73

    Article  CAS  Google Scholar 

  34. Wang F, Hu SS (2009) Electrochemical sensors based on metal and semiconductor nanoparticles. Microchim Acta 165:1

    Article  CAS  Google Scholar 

  35. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of Au colloid monolayers. Anal Chem 67:735

    Article  CAS  Google Scholar 

  36. Yang R, Ruan CM, Dai WL, Deng JQ, Kong JL (1999) Electropolymerization of thionine in neutral aqueous media and H2O2 biosensor based on poly(thionine). Electrochim Acta 44:1585

    Article  CAS  Google Scholar 

  37. Liu YJ, Yin F, Long YM, Zhang ZH, Yao SZ (2003) Study of the immobilization of alcohol dehydrogenase on Au-colloid modified gold electrode by piezoelectric quartz crystal sensor, cyclic voltammetry, and electrochemical impedance techniques. J Colloid Interface Sci 258:75

    Article  CAS  Google Scholar 

  38. Feng JJ, Zhao G, Xu JJ, Chen HY (2005) Direct electrochemistry and electrocatalysis of hemeproteins immobilized on gold nanoparticles stabilized by chitosan. Anal Biochem 342:280

    Article  CAS  Google Scholar 

  39. Bard AJ, Faulkner LR (2001) Electrochemical methods: Fundamentals and applications, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  40. Schomberg D, Salzmann M, and Stephan D (1993) Enzyme Handbook 7, EC 1.11.1.7:1–6

  41. Xiao Y, Ju HX, Chen HY (1999) A reagentless hydrogen peroxide sensor based on incorporation of horseradish peroxidase in poly(thionine) film on a monolayer modified electrode. Anal Chim Acta 391:299

    Article  CAS  Google Scholar 

  42. Zhang YH, Chen X, Yang WS (2008) Direct electrochemistry and electrocatalysis of horseradish peroxidase in α-zirconium phosphate nanosheet film. Sensor Actuat B Chem 130:682

    Article  Google Scholar 

  43. Bond AM (1980) Modern Polarographic methods in analytical chemistry. Marcel Dekker, New York

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (Grant number: 21075030) and Australian Research Council under its Discovery Project Scheme (DP0776086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimin Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Zhang, H., Wu, Y. et al. Amperometric hydrogen peroxide biosensor based on a glassy carbon electrode modified with polythionine and gold nanoparticles. Microchim Acta 176, 279–285 (2012). https://doi.org/10.1007/s00604-011-0716-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0716-y

Keywords

Navigation