Skip to main content
Log in

Non-enzymatic hydrogen peroxide sensor using an electrode modified with iron pentacyanonitrosylferrate nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical sensor was developed for determination of hydrogen peroxide (HP) based on a carbon ceramic electrode modified with iron pentacyanonitrosylferrate (FePCNF). The surface of an iron-doped CCE was derivatized in a solution of PCNF by cycling the electrode potential between −0.2 and +1.3 V for about 60 times. The morphology and the composition of the resulting electrode were characterized by scanning electron microscopy and Fourier transform infrared techniques. The electrode displayed excellent response to the electro-oxidation of HP which is linearly related to its concentration in the range from 0.5 μM to 1300 μM. The detection limit is 0.4 μM, and the sensitivity is 849 A M −1 cm −2. The modified electrode was used to determination of HP in hair coloring creams as real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang CL, Mulchandani A (1995) Ferrocene-conjugated polyaniline-modified enzyme electrodes for determination of peroxides in organic media. Anal Chem 67:1109

    Article  CAS  Google Scholar 

  2. Matsubara C, Kawamoto N, Takamura K (1992) Oxo [5, 10, 15, 20-tetra(4-pyridyl)porphyrinato] titanium(IV): an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst 117:1781

    Article  CAS  Google Scholar 

  3. Hanaoka S, Lin JM, Yamada M (2001) Chemiluminescent flow sensor for H2O2 based on the decomposition of H2O2 catalyzed by cobalt(II)-ethanolamine complex immobilized on resin. Anal Chim Acta 426:57

    Article  CAS  Google Scholar 

  4. Li J, Tan SN, Ge HL (1996) Silica sol-gel immobilized amperometric biosensor for hydrogen peroxide. Anal Chim Acta 335:137

    Article  CAS  Google Scholar 

  5. Garguilo MG, Huynh N, Proctor A, Michael AC (1993) Amperometric sensors for peroxide, choline, and acetylcholine based on electron transfer between horseradish peroxidase and a redox polymer. Anal Chem 65:523

    Article  CAS  Google Scholar 

  6. Xiao Y, Ju HX, Chen HY (1999) A reagentless hydrogen peroxide sensor based on incorporation of horseradish peroxidase in poly(thionine) film on a monolayer modified electrode. Anal Chim Acta 391:299

    Article  CAS  Google Scholar 

  7. Mao L, Osborne PG, Yamamoto K, Kato T (2002) Continuous on-line measurement of cerebral hydrogen peroxide using enzyme-modified ring–disk plastic carbon film electrode. Anal Chem 74:3684

    Article  CAS  Google Scholar 

  8. Updike SJ, Hicks GP (1967) The enzyme electrode. Nature 214:986

    Article  CAS  Google Scholar 

  9. Lindgren A, Ruzgas T, Gorton L, Csoregi E, Bautista A, Sakharov G, Gazaryan IY (2000) Biosensors based on novel peroxidases with improved properties in direct and mediated electron transfer. Biosens Bioelectron 15:491

    Article  CAS  Google Scholar 

  10. Serradilla SR, Lopez B, Mora D, Mark HB, Kauffmann JM (2002) Hydrogen peroxide sensitive amperometric biosensor based on horseradish peroxidase entrapped in a polypyrrole electrode. Biosens Bioelectron 17:921

    Article  Google Scholar 

  11. Karyakin AA, Karyakina E (1999) Prussian Blue-based ‘artificial peroxidase’ as a transducer for hydrogen peroxide detection. Application to biosensors. Sens Actuators B 57:268

    Article  Google Scholar 

  12. Ricci F, Amine A, Tuta CS, Ciucu AA, Lucarelli F, Palleschi G, Moscone D (2003) Prussian Blue and enzyme bulk-modified screen-printed electrodes for hydrogen peroxide and glucose determination with improved storage and operational stability. Anal Chim Acta 485:111

    Article  CAS  Google Scholar 

  13. Ricci F, Palleschi G (2005) Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosens Bioelectron 21:389

    Article  CAS  Google Scholar 

  14. Buster HJ, Schwarzenbach D, Petter W, Ludi A (1977) The crystal structure of Prussian Blue: Fe4[Fe(CN)6]3.xH2O. Inorg Chem 16:2704

    Article  Google Scholar 

  15. Razmi H, Mohammad-Rezaei R, Heidari H (2009) Self-assembled prussian blue nanoparticles based electrochemical sensor for high sensitive determination of H2O2 in acidic media. Electroanalysis 21:2355

    Article  CAS  Google Scholar 

  16. Somani PR, Radhakrishnan S (2003) Electrochromic materials and devices: present and future. Mater Chem Phys 77:117

    Article  CAS  Google Scholar 

  17. Zhou PH, Xue DS, Luo HQ, Chen XG (2002) Fabrication, structure, and magnetic properties of highly ordered prussian blue nanowire arrays. Nano Lett 2:845

    Article  CAS  Google Scholar 

  18. Nakatani K, Yu P (2001) Photochromic magnetic materials. Adv Mater 13:1411

    Article  CAS  Google Scholar 

  19. Beseth PA, Sokol JJ, Shores MP, Heinrich JL, Long JR (2000) High-nuclearity metal-cyanide clusters: assembly of a Cr8Ni6(CN)24 cage with a face-centered cubic geometry. J Am Chem Soc 122:9655

    Article  Google Scholar 

  20. Pan KC, Chuang CS, Cheng SH, Su YO (2001) Electrocatalytic reactions of nitric oxide on Prussian blue film modified electrodes. J Electroanal Chem 501:160

    Article  CAS  Google Scholar 

  21. Razmi H, Mohammad-Rezaei R (2010) Flow injection amperometric determination of pyridoxine at a Prussian blue nanoparticle-modified carbon ceramic electrode. Electrochim Acta 50:1814

    Article  Google Scholar 

  22. Pyrasch M, Toutianoush A, Jin WQ, Schnepf J, Tieke B (2003) Self-assembled films of prussian blue and analogues: optical and electrochemical properties and application as ion-sieving membranes. Chem Mater 15:245

    Article  CAS  Google Scholar 

  23. Jayalakshimi M, Scholz F (2000) Charge–discharge characteristics of a solid-state Prussian blue secondary cell. J Power Sources 87:212

    Article  Google Scholar 

  24. Moscone D, D’Ottavi D, Compagnone D, Palleschi G, Amine A (2001) Construction and analytical characterization of prussian blue-based carbon paste electrodes and their assembly as oxidase enzyme sensors. Anal Chem 73:2529

    Article  CAS  Google Scholar 

  25. Culp JT, Park JH, Stratakis D, Meisel MW, Talham DR (2002) Supramolecular assembly at interfaces: formation of an extended two-dimensional coordinate covalent square grid network at the air-water interface. J Am Chem Soc 124:10083

    Article  CAS  Google Scholar 

  26. Neff VD (1978) Electrochemical oxidation and reduction of thin films of Prussian Blue. J Electrochem Soc 125:886

    Article  CAS  Google Scholar 

  27. Pournaghi-Azar MH, Dastangoo H (2002) Electrochemical characteristics of an aluminum electrode modified by a palladium hexacyanoferrate film, synthesized by a simple electroless procedure. J Electroanal Chem 523:26

    Article  CAS  Google Scholar 

  28. Lezna RO, Romagnoli R, Tacconi NR, Rajeshwar K (2003) Spectroelectrochemistry of palladium hexacyanoferrate films on platinum substrates. J Electroanal Chem 544:101

    Article  CAS  Google Scholar 

  29. Czirók E, Bácskai J, Kulesza PJ, Inzelt G, Wolkiewicz A, Miecznikowski K, Malik MA (1996) Quartz crystal microbalance study of the growth of indium hexacyanoferrate films during electrodeposition and coagulation. J Electroanal Chem 405:205

    Article  Google Scholar 

  30. Wang Y, Zhu GY, Wang EK (1997) Electrochemical quartz crystal microbalance study for vanadium hexacyanoferrates: monitoring of film growth and ion effects during redox reactions. J Electroanal Chem 430:127

    Article  CAS  Google Scholar 

  31. Kasem K, Steldt FR, Miller TJ, Zimmerman AN (2003) Electrochemical synthesis of zeolite-like ruthenium-based hexacyanometalates multi-film assemblies. Microporous Mesoporous Mater 66:133

    Article  CAS  Google Scholar 

  32. Bacskai J, Martinusz K, Czirok E, Inzelt G, Kulesza PJ, Malik MA (1995) Polynuclear nickel hexacyanoferrates: monitoring of film growth and hydrated counter-cation flux/storage during redox reactions. J Electroanal Chem 385:241

    Article  Google Scholar 

  33. Sheng QL, Yu H, Zheng J (2007) Sol–gel derived terbium hexacyanoferrate modified carbon ceramic electrode: Electrochemical behavior and its electrocatalytical oxidation of ascorbic acid. J Electroanal Chem 606:39

    Article  CAS  Google Scholar 

  34. Pournaghi-Azar MH, Nahalparvari H (2005) Zinc hexacyanoferrate film as an effective protecting layer in two-step and one-step electropolymerization of pyrrole on zinc substrate. Electrochim Acta 50:2107

    Article  CAS  Google Scholar 

  35. Lin MS, Tseng TF, Shih WC (1998) Chromium(III) hexacyanoferrate(II)-based chemical sensor for the cathodic determination of hydrogen peroxide. Analyst 123:159

    Article  CAS  Google Scholar 

  36. Gao Z, Zhang Y, Wang G (1998) Electrochemistry of a thin cobalt(II)– heptacyanonitrosylferrate film modified glassy carbon electrode. Anal Sci 14:1053

    Article  CAS  Google Scholar 

  37. Pournaghi-Azar MH, Razmi-Nerbin H (2001) Electrocatalytic characteristics of thiosulfate oxidation at nickel plated aluminum electrode modified with nickel pentacyanonitrosylferrate films. Electroanalysis 13:465

    Article  CAS  Google Scholar 

  38. Razmi H, Heidari H (2009) Amperometric determination of hydrogen peroxide on surface of a novel PbPCNF-modified carbon-ceramic electrode in acidic medium. J Electroanal Chem 625:101

    Article  CAS  Google Scholar 

  39. Razmi H, Es H (2009) Nanomolar detection of hydrogen peroxide at a new polynuclear cluster of tin pentacyanonitrosylferrate nanoparticle-modified carbon ceramic electrode. Anal Biochem 392:126

    Article  CAS  Google Scholar 

  40. Gun G, Tsionsky M, Lev O (1994) Voltammetric studies of composite ceramic carbon working electrodes. Anal Chim Acta 294:261

    Article  CAS  Google Scholar 

  41. Pamidi PVA, Parrado C, Kane SA, Wang J, Smyth MR, Pingarn JM (1997) Sol– gel carbon composite electrode as an amperometric detector for liquid chromatography. Talanta 44:1929

    Article  CAS  Google Scholar 

  42. Tsionsky M, Gun G, Glezer V, Lev O (1994) Sol–gel-derived ceramic-carbon composite electrodes: introduction and scope of applications. Anal Chem 66:1747

    Article  CAS  Google Scholar 

  43. Lezna RO, Romagnoli R, Tacconi NR, Rajeshwar K (2002) Cobalt hexacyanoferrate: compound stoichiometry, infrared spectroelectrochemistry, and photoinduced electron transfer. J Phys Chem B 106:3612

    Article  CAS  Google Scholar 

  44. Xun Z, Cai C, Lu T (2004) Effects of a surfactant on the electrocatalytic activity of cobalt hexacyanoferrate modified glassy carbon electrode towards the oxidation of dopamine. Electroanalysis 16:674

    Article  CAS  Google Scholar 

  45. Pournaghi-Azar MH, Nahalparvari H (2005) Preparation and characterization of electrochemical and electrocatalytic behavior of a zinc pentacyanonitrosylferrate film-modified glassy carbon electrode. J Electroanal Chem 583:307

    Article  CAS  Google Scholar 

  46. Carapuça HM, Simao JEJ, Fogg AG (1998) Comproportionation and disproportionation reactions in the electrochemical reduction of nitroprusside at a hanging mercury drop electrode in acidic solution. J Electroanal Chem 455:93

    Article  Google Scholar 

  47. Chen SM (2002) Preparation, characterization, and electrocatalytic oxidation properties of iron, cobalt, nickel, and indium hexacyanoferrate. J Electroanal Chem 521:29

    Article  CAS  Google Scholar 

  48. Murray RW (1984) In: Bard AJ (ed) Electroanalytical Chemistry, vol. 13. Marcel Dekker, New York (Chapter 3)

    Google Scholar 

  49. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19

    Article  CAS  Google Scholar 

  50. Feldman BJ, Murray RW (1987) Electron diffusion in wet and dry Prussian blue films on interdigitated array electrodes. Inorg Chem 26:1702

    Article  CAS  Google Scholar 

  51. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  52. Galus Z (1976) Fundamentals of Electrochemical Analysis, Chapter 10. Ellis Horwood, New York

    Google Scholar 

  53. Li M, Zhao G, Yue Z, Huang S (2009) Sensor for traces of hydrogen peroxide using an electrode modified by multiwalled carbon nanotubes, a gold-chitosan colloid, and Prussian blue. Microchim Acta 167:167

    Article  CAS  Google Scholar 

  54. Wang Q, Yun Y, Zheng J (2009) Nonenzymatic hydrogen peroxide sensor based on a polyaniline-single walled carbon nanotubes composite in a room temperature ionic liquid. Microchim Acta 167:153

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Razmi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razmi, H., Mohammad-Rezaei, R. Non-enzymatic hydrogen peroxide sensor using an electrode modified with iron pentacyanonitrosylferrate nanoparticles. Microchim Acta 171, 257–265 (2010). https://doi.org/10.1007/s00604-010-0426-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0426-x

Keywords

Navigation