Skip to main content
Log in

Determination of acetamiprid by a colorimetric method based on the aggregation of gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A method was developed for the detection of the insecticide acetamiprid based on the strong interaction of the cyano group of acetamiprid with gold nanoparticles (AuNPs). The interaction results in the aggregation of gold nanoparticles and is accompanied by a color change from red to purple. The concentration of acetamiprid can be determined qualitatively and quantitatively by visually monitoring the color change or by using a spectrometer. Transmittance electron microscopy and UV-vis spectroscopy have been used to characterize the process. The experimental parameters were optimized with regard to the size of the AuNPs, pH, and incubation time. Under optimal experimental conditions, linear relationships between the logarithm of the concentration of acetamiprid and the absorbance were found over the range of 0.66 to 6.6 μM for AuNPs with diameters of 22.0 ± 1.0 nm and of 6.6–66 μM for AuNPs with diameters of 15.0 ± 1.0 nm. This method was successfully applied to detect acetamiprid in vegetables.

A method was developed for the detection of acetamiprid based on the strong interaction of the cyano group of acetamiprid with gold nanoparticles. This method is rapid, sensitive and low-cost. It can be used for pesticide residues detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yao XH, Min H, Lu ZH, Yuan HP (2006) Influence of acetamiprid on soil enzymatic activities and respiration. Eur J Soil Biol 42:120–126

    Article  CAS  Google Scholar 

  2. http://www.forbes.com/2009/10/16/bayer-bees-drugs-business-media-bayer.html

  3. Zhou QX, Ding YJ, Xiao JP (2006) Sensitive determination of thiamethoxam, imidacloprid and acetamiprid in environmental water samples with solid-phase extraction packed with multiwalled carbon nanotubes prior to high-performance liquid chromatography. Anal Bioanal Chem 385:1520–1525

    Article  CAS  Google Scholar 

  4. Obana H, Okihashi M, Akutsu K, Kitagawa Y, Hori S (2002) Determination of acetamiprid, imidacloprid, and nitenpyram residues in vegetables and fruits by high-performance liquid chromatography with diode-array detection. J Agr Food Chem 50:4464–4467

    Article  CAS  Google Scholar 

  5. Zhang BH, Pan XP, Venne L, Dunnum S, McMurry ST, Cobb GP, Anderson TA (2008) Development of a method for the determination of 9 currently used cotton pesticides by gas chromatography with electron capture detection. Talanta 75:1055–1060

    Article  CAS  Google Scholar 

  6. Mateu-Sanchez M, Moreno M, Arrebola FJ, Vidal JLM (2003) Analysis of acetamiprid in vegetables using gas chromatography-tandem mass spectrometry. Anal Sci 19:701–704

    Article  CAS  Google Scholar 

  7. Radisic M, Grujic S, Vasiljevic T, Lausevic M (2009) Determination of selected pesticides in fruit juices by matrix solid-phase dispersion and liquid chromatography-tandem mass spectrometry. Food Chem 113:712–719

    Article  CAS  Google Scholar 

  8. Muccio AD, Fidente P, Barbini DA, Dommarco R, Seccia S, Morrica P (2006) Application of solid-phase extraction and liquid chromatography–mass spectrometry to the determination of neonicotinoid pesticide residues in fruit and vegetables. J Chromatogr A 1108:1–6

    Article  Google Scholar 

  9. Obana H, Okihashi M, Akutsu K, Kitagawa Y, Hori S (2003) Determination of neonicotinoid pesticide residues in vegetables and fruits with solid phase extraction and liquid chromatography mass spectrometry. J Agr Food Chem 51:2501–2505

    Article  CAS  Google Scholar 

  10. Wanatabe S, Ito S, Kamata Y, Omoda N, Yamazaki T, Munakata H, Kaneko T, Yuasa Y (2001) Development of competitive enzyme-linked immunosorbent assays (ELISAs) based on monoclonal antibodies for chloronicotinoid insecticides imidacloprid and acetamiprid. Anal Chim Acta 427:211–219

    Article  CAS  Google Scholar 

  11. Wang W, Wu WY, Wang W, Zhu JJ (2010) Tree-shaped paper strip for semiquantitative colorimetric detection of protein with self-calibration. J Chromatogr A 1217:3896–3899

    Article  CAS  Google Scholar 

  12. Mascini M, Guilbault GG, Monk IR, Hill C, Carlo MD, Compagnone D (2008) Screening of rationally designed oligopeptides for Listeria monocytogenes detection by means of a high density colorimetric microarray. Microchim Acta 163:227–235

    Article  CAS  Google Scholar 

  13. Wang Y, Wang J, Yang F, Yang XR (2010) Spectrophotometric detection of lead(II) ion using unimolecular peroxidase-like deoxyribozyme. Microchim Acta 171:195–201

    Article  CAS  Google Scholar 

  14. Liu SQ, Yuan L, Yue XL, Zhang ZZ, Tang ZY (2008) Recent advances in nanosensors for organophosphate pesticide detection. Adv Powder Technol 19:419–441

    CAS  Google Scholar 

  15. Liu JW, Lu Y (2006) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and aanoparticles. Angew Chem Int Ed 45:90–94

    Article  CAS  Google Scholar 

  16. Wu WY, Bian ZP, Wang W, Zhu JJ (2010) PDMS gold nanoparticle composite film-based silver enhanced colorimetric detection of cardiac troponin. Sensor Actuat B 147:298–303

    Article  Google Scholar 

  17. Zhang YM, Lin Q, Wei TB, Wang DD, Yao H, Wang YL (2009) Simple colorimetric sensors with high selectivity for acetate and chloride in aqueous solution. Sensor Actuat B 137:447–455

    Article  Google Scholar 

  18. Zhang SH, Wang J, Han L, Li CG, Wang W, Yuan Z (2010) Colorimetric detection of bis-phosphorylated peptides using zinc (II) dipicolylamine-appended gold nanoparticles. Sensor Actuat B 147:687–690

    Article  Google Scholar 

  19. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    Article  CAS  Google Scholar 

  20. Ai KL, Liu YL, Lu LH (2009) Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. J Am Chem Soc 131:9496–9497

    Article  CAS  Google Scholar 

  21. Han CP, Zeng LL, Li HB, Xie GY (2009) Colorimetric detection of pollutant aromatic amines isomers with p-sulfonatocalix[6]arene-modified gold nanoparticles. Sensor Actuat B 137:704–709

    Article  Google Scholar 

  22. Zhao W, Brook MA, Li YF (2008) Design of gold nanoparticle-based colorimetric biosensing assays. ChemBioChem 9:2363–2371

    Article  CAS  Google Scholar 

  23. Zhao W, Chiuman W, Lam JCF, McManus SA, Chen W, Cui YG, Pelton R, Brook MA, Li YF (2008) DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors. J Am Chem Soc 130:3610–3618

    Article  CAS  Google Scholar 

  24. Zhao W, Chiuman W, Brook MA, Li YF (2007) Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation. ChemBioChem 8:727–731

    Article  CAS  Google Scholar 

  25. Zhang YF, Li BX, Chen XL (2010) Simple and sensitive detection of dopamine in the presence of high concentration of ascorbic acid using gold nanoparticles as colorimetric probes. Microchim Acta 168:107–113

    Article  CAS  Google Scholar 

  26. Doron A, Katz E, Willner I (1995) Organization of Au colloids as monolayer films onto ITO glass surfaces: application of the metal colloid films as base interfaces to construct redox-active monolayers. Langmuir 11:1313–1317

    Article  CAS  Google Scholar 

  27. Li H, Rothberg LJ (2004) Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J Am Chem Soc 126:10958–10961

    Article  CAS  Google Scholar 

  28. Kuhn S, Baisch B, Jung U, Johannsen T, Kubitschke J, Herges R, Magnussen O (2010) Self-assembly of triazatriangulenium-based functional adlayers on Au(111) surfaces. Phys Chem Chem Phys 12:4481–4487

    Article  CAS  Google Scholar 

  29. Napper DH (1983) Polymeric stabilization of colloidal dispersions. Academic, New York

    Google Scholar 

  30. Jiang ZL, Feng ZW, Li TS, Li F, Zhong FX, Xie JY, Yi XH (2001) Resonance scattering spectroscopy of gold nanoparticle. Sci China Ser B 44:175–181

    Article  CAS  Google Scholar 

  31. Papanastasiou G, Ziogas I (1989) Acid-base equilibria in ternary water/methanol/dioxane solvent systems: determination of pK values of citric acid at 25 °C. Anal Chim Acta 222:189–200

    Article  CAS  Google Scholar 

  32. Kim T, Lee C-H, Joo S-W, Lee K (2008) Kinetics of gold nanoparticle aggregation: experiments and modeling. J Colloid Interf Sci 318:238–243

    Article  CAS  Google Scholar 

  33. Kim T, Lee K, Gong M, Joo S-W (2005) Control of gold nanoparticle aggregates by manipulation of interparticle interaction. Langmuir 21:9524–9528

    Article  CAS  Google Scholar 

  34. Templeton AC, Hostetler MJ, Kraft CT, Murray RW (1998) Reactivity of monolayer-protected gold cluster molecules: steric effects. J Am Chem Soc 120:1906–1911

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Nos. 20675071, 20705030, 20875081), 863 Program Foundation (2009AA03Z331), the Foundation of Jiangsu Key Laboratory of Environmental Material and Engineering (K08021) and the Postdoctoral Science Foundation of China (20090461161).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Ya Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Q., Du, S., Jin, Gd. et al. Determination of acetamiprid by a colorimetric method based on the aggregation of gold nanoparticles. Microchim Acta 173, 323–329 (2011). https://doi.org/10.1007/s00604-011-0562-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0562-y

Keywords

Navigation