Skip to main content
Log in

Gold nanoparticle-based selective and efficient spectrophotometric assay for the insecticide methamidophos

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A reliable, rapid, and inexpensive nano-sized chemosensor is presented for methamidophos (MET) — an insecticide. Poly(lactic acid) (PLA)-stabilized gold nanoparticles (AuNPs) were synthesized by a simple one-pot, two-phase chemical reduction method. The synthesized PLA-AuNPs were subsequently employed for selective, efficient, and quantitative detection of MET. MET is one of the highly toxic pesticides used for eradication of agricultural and urban insects. Upon the addition of MET, the wine-red color of PLA-AuNPs swiftly transformed into greyish-blue, further corroborated by a significant bathochromic and hyperchromic shift in the SPR band. The presence of other interfering insecticides, metal salts, and drugs did not have any pronounced effect on quantitative MET detection. The detection limit, the quantification limit, and linear dynamic range of MET utilizing PLA-AuNPs were  0.0027 µM, 0.005 µM, and 0.005–1000 µM, respectively. The PLA-AuNP-based assay renders an efficient, rapid, accurate, and selective quantification of MET in food, biological, and environmental samples. The proposed sensor provides an appropriate platform for fast and on-the-spot determination of MET without requiring a well-equipped lab setup.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Associated data will be made available on request.

References

  1. Sun P, Zheng S, Yan R, Lian Y (2022) Determination of organophosphorus pesticides using solid-phase extraction followed by gas chromatography–mass spectrometry. J Chromatogr Sci 60(1):1–6

    Article  PubMed  Google Scholar 

  2. Ayivi RD, Obare SO, Wei J (2023) Molecularly imprinted polymers as chemosensors for organophosphate pesticide detection and environmental applications. TrAC, Trends Anal Chem 167:117231

  3. Sun X, Wang X (2010) Acetylcholinesterase biosensor based on prussian blue-modified electrode for detecting organophosphorous pesticides. Biosens Bioelectron 25(12):2611–2614

    Article  CAS  PubMed  Google Scholar 

  4. Blanco-Muñoz J, Morales MM, Lacasaña M, Aguilar-Garduño C, Bassol S, Cebrián ME (2010) Exposure to organophosphate pesticides and male hormone profile in floriculturist of the state of Morelos. Mexico Hum Reprod 25(7):1787–1795

    Article  PubMed  Google Scholar 

  5. Song D, Jiang X, Li Y, Lu X, Luan S, Wang Y, Li Y, Gao F (2019) Metal-organic frameworks-derived MnO2/Mn3O4 microcuboids with hierarchically ordered nanosheets and Ti3C2 MXene/Au NPs composites for electrochemical pesticide detection. J Hazard Mater 373:367–376

    Article  CAS  PubMed  Google Scholar 

  6. Raj RS, Krishnan KA, (2023) A comprehensive review on the impact of emerging organophosphorous pesticides and their remedial measures: Special focus on acephate. Environ Nanotechnol Monit Manage 20:100813

  7. Pérez-Ruiz T, Martı́nez-Lozano C, Tomás, Martı́n (2001) Flow injection determination of methamidophos using online photo-oxidation and fluorimetric detection. Talanta 54(5):989–995

  8. Jan MR, Shah J, Bashir N, Salman M (2010) Flow injection spectrophotometric determination of methamidophos using online hydrolysis. Environ Monit Assess 167(1):685–689

    Article  CAS  PubMed  Google Scholar 

  9. Khan DA, Hashmi I, Mahjabeen W, Naqvi TA (2010) Monitoring health implications of pesticide exposure in factory workers in Pakistan. Environ Monit Assess 168(1):231–240

    Article  CAS  PubMed  Google Scholar 

  10. Chenggang S, Suqing Z, Zhang K, Guobao H, Zhenyu Z (2008) Preparation of colloidal gold immunochromatography strip for detection of methamidophos residue. J Environ Sci Health 20(11):1392–1397

    Google Scholar 

  11. Mariño D, Patiño N (2022) Determination of aldicarb, carbofuran and methamidophos in blood derived from forensic cases through liquid chromatography with electrospray ionization and tandem mass spectrometry (LC–ESI-MS-MS). J Anal Toxicol 46(1):37–46

    Article  PubMed  Google Scholar 

  12. Juachon MJ, Regala JG, Marquez JM, Bailon MX (2019) A proposed image-based detection of methamidophos pesticide using peroxyoxalate chemiluminescence system. Open Chem 17(1):270–278

    Article  CAS  Google Scholar 

  13. Cancino J, Razzino CA, Zucolotto V, Machado SA (2013) The use of mixed self-assembled monolayers as a strategy to improve the efficiency of carbamate detection in environmental monitoring. Electrochim Acta 87:717–723. https://doi.org/10.1016/j.electacta.2012.09.080

    Article  CAS  Google Scholar 

  14. Riaz S, Ansari MA, Raja DA, Tahir H, Malik MI (2023) Poly (3-hexylthiophene) incorporated with metallic nanoparticles: optoelectronic properties in context of organic solar cell. Opt Quantum Electron 55(8):700

    Article  CAS  Google Scholar 

  15. Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG (2019) Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J Drug Delivery Sci Technol 53:101174

    Article  CAS  Google Scholar 

  16. Ali S et al (2023) Recent advances in silver and gold nanoparticles-based colorimetric sensors for heavy metal ions detection: a review. Crit Rev Anal Chem 53(3):718–750

  17. Sonawane SK, Ahmad A, Chinnathambi S (2019) Protein-capped metal nanoparticles inhibit tau aggregation in Alzheimer’s disease. ACS Omega 4(7):12833–12840. https://doi.org/10.1021/acsomega.9b01411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. El-Deeb NM, Abo-Eleneen MA, Al-Madboly LA, Sharaf MM, Othman SS, Ibrahim OM, Mubarak MS (2020) Biogenically synthesized polysaccharides-capped silver nanoparticles: immunomodulatory and antibacterial potentialities against resistant Pseudomonas aeruginosa. Front Bioeng Biotechnol 8:643. https://doi.org/10.3389/fbioe.2020.00643

    Article  PubMed  PubMed Central  Google Scholar 

  19. Riaz S, Fatima Rana N, Hussain I, Tanweer T, Nawaz A, Menaa F, Janjua HA, Alam T, Batool A, Naeem A (2020) Effect of flavonoid-coated gold nanoparticles on bacterial colonization in mice organs. Nanomaterials 10(9):1769. https://doi.org/10.3390/nano10091769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Raja DA, Musharraf SG, Shah MR, Jabbar A, Bhanger MI, Malik MI (2020) Poly (propylene glycol) stabilized gold nanoparticles: an efficient colorimetric assay for ceftriaxone. J Ind Eng Chem 87:180–186. https://doi.org/10.1016/j.jiec.2020.03.041

    Article  CAS  Google Scholar 

  21. Rahim S, Ali SA, Ahmed F, Imran M, Shah MR, Malik MI (2017) Evaluation of morphology, aggregation pattern and size-dependent drug-loading efficiency of gold nanoparticles stabilised with poly (2-vinyl pyridine). J Nanopart Res 19(7):1–11. https://doi.org/10.1007/s11051-017-3933-4

    Article  CAS  Google Scholar 

  22. Arabi M, Chen L (2022) Technical challenges of molecular-imprinting-based optical sensors for environmental pollutants. Langmuir 38(19):5963–5967

    Article  CAS  PubMed  Google Scholar 

  23. Sztandera K, Gorzkiewicz M, Klajnert-Maculewicz B (2018) Gold nanoparticles in cancer treatment. Mol Pharmaceutics 16(1):1–23

    Article  Google Scholar 

  24. Xu Y, Kutsanedzie FY, Hassan M, Zhu J, Ahmad W, Li H, Chen Q (2020) Mesoporous silica supported orderly-spaced gold nanoparticles SERS-based sensor for pesticides detection in food. Food Chem 315:126300

    Article  CAS  PubMed  Google Scholar 

  25. Hejazi M, Arshadi S, Amini M, Baradaran B, Shahbazi-Derakhshi P, Sameti P, Soleymani J, Mokhtarzadeh A, Tavangar SM (2023) Hyaluronic acid-functionalized gold nanoparticles as a cancer diagnostic probe for targeted bioimaging applications. Microchem J 193:108953

    Article  CAS  Google Scholar 

  26. Laksee S, Sansanaphongpricha K, Puthong S, Sangphech N, Palaga T, Muangsin N (2020) New organic/inorganic nanohybrids of targeted pullulan derivative/gold nanoparticles for effective drug delivery systems. Int J Biol Macromol 162:561–577

    Article  CAS  PubMed  Google Scholar 

  27. Burlec AF, Corciova A, Boev M, Batir-Marin D, Mircea C, Cioanca O, Danila G, Danila M, Bucur AF, Hancianu M (2023) Current overview of metal nanoparticles’ synthesis, characterization, and biomedical applications, with a focus on silver and gold nanoparticles. Pharmaceuticals 16(10):1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL (2013) Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 113(3):1904–2074

    Article  CAS  PubMed  Google Scholar 

  29. Arabi M, Ostovan A, Zhang Z, Wang Y, Mei R, Fu L, Wang X, Ma J, Chen L (2021) Label-free SERS detection of Raman-Inactive protein biomarkers by Raman reporter indicator: toward ultrasensitivity and universality. Biosens Bioelectron 174:112825

    Article  CAS  PubMed  Google Scholar 

  30. Arabi M, Ostovan A, Li J, Wang X, Zhang Z, Choo J, Chen L (2021) Molecular imprinting: green perspectives and strategies. Adv Mater 33(30):2100543

    Article  CAS  Google Scholar 

  31. Arabi M, Ostovan A, Wang Y, Mei R, Fu L, Li J, Wang X, Chen L (2022) Chiral molecular imprinting-based SERS detection strategy for absolute enantiomeric discrimination. Nat Commun 13(1):5757

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Raja DA, Munir F, Shah MR, Bhanger MI, Malik MI (2021) Colorimetric sensing of cephradine through polypropylene glycol functionalized gold nanoparticles. R Soc Open Sci 8(5):210185. https://doi.org/10.1098/rsos.210185

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rahim S, Bhayo AM, Shah MR, Malik MI (2019) Star-shaped poly (ethylene oxide)-block-poly (caprolactone) conjugated silver nanoparticles: a colorimetric probe for cephalexin in environmental, biological and pharmaceutical samples. Microchem J 149:104048. https://doi.org/10.1016/j.microc.2019.104048

    Article  CAS  Google Scholar 

  34. Rahim S, Khalid S, Bhanger MI, Shah MR, Malik MI (2018) Polystyrene-block-poly (2-vinylpyridine)-conjugated silver nanoparticles as colorimetric sensor for quantitative determination of Cartap in aqueous media and blood plasma. Sens Actuators, B 259:878–887. https://doi.org/10.1016/j.snb.2017.12.138

    Article  CAS  Google Scholar 

  35. Rahim S, Rauf A, Rauf S, Shah MR, Malik MI (2018) Enhanced electrochemical response of a modified glassy carbon electrode by poly (2-vinlypyridine-b-methyl methacrylate) conjugated gold nanoparticles for detection of nicotine. RSC Adv 8(62):35776–35786. https://doi.org/10.1039/C8RA06857G

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Malik MI, Shah MR, Rahim S, Khaild S, Bhanger MI, Vohra MI (2021) Nanosensor for the determination of insecticide. U. S. Patent US 10,883928 B2

  37. Raja DA, Shah MR, Malik MI (2022) Polyethyleneimine stabilized silver nanoparticles as an efficient and selective colorimetric assay for promethazine. Anal Chim Acta 1223:340216

    Article  CAS  PubMed  Google Scholar 

  38. Raja DA, Rahim S, Shah MR, Bhanger MI, Malik MI (2023) Silver nanoparticle based efficient colorimetric assay for carbaryl—an insecticide. J Mol Liq 372:121200

    Article  CAS  Google Scholar 

  39. Maruthupandi M, Chandhru M, Rani SK, Vasimalai N (2019) Highly selective detection of iodide in biological, food, and environmental samples using polymer-capped silver nanoparticles: preparation of a paper-based testing kit for on-site monitoring. ACS Omega 4(7):11372–11379. https://doi.org/10.1021/acsomega.9b01144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xue Y, Dong B, Liu X, Wang F, Yang J, Liu D (2019) Using selenium-conjugated polyethylene glycol to enhance the stability of gold nanoparticles in biologically relevant samples. Sci China Chem 62(2):280–286. https://doi.org/10.1007/s11426-018-9374-y

    Article  CAS  Google Scholar 

  41. Jäger M, Schubert S, Ochrimenko S, Fischer D, Schubert US (2012) Branched and linear poly (ethylene imine)-based conjugates: synthetic modification, characterization, and application. Chem Soc Rev 41(13):4755–4767. https://doi.org/10.1039/C2CS35146C

    Article  PubMed  Google Scholar 

  42. Aijaz A, Raja DA, Khan F-A, Barek J, Malik MI (2023) A silver nanoparticles-based selective and sensitive colorimetric assay for ciprofloxacin in biological, environmental, and commercial samples. Chemosensors 11(2):91

    Article  CAS  Google Scholar 

  43. Cheng Y, Deng S, Chen P, Ruan R (2009) Polylactic acid (PLA) synthesis and modifications: a review. Front Chem China 4(3):259–264

    Article  Google Scholar 

  44. Qiu H, Rieger J, Gilbert B, Jérôme R, Jérôme C (2004) PLA-coated gold nanoparticles for the labeling of PLA biocarriers. Chem Mater 16(5):850–856

    Article  CAS  Google Scholar 

  45. Syed JH, Alamdar A, Mohammad A, Ahad K, Shabir Z, Ahmed H, Ali SM, Sani SGAS, Bokhari H, Gallagher KD (2014) Pesticide residues in fruits and vegetables from Pakistan: a review of the occurrence and associated human health risks. Environ Sci Pollut Res 21(23):13367–13393

    Article  CAS  Google Scholar 

  46. Ahmad T, Durrani SS, Iftikhar FJ, Musharraf SG, Malik MI (2021) Concurrent ring-opening and atom transfer radical polymerization for synthesis of block copolymers, and their comprehensive chromatographic characterization. Eur Polym J 142:110161

    Article  CAS  Google Scholar 

  47. Pfortmueller CA, Uehlinger D, von Haehling S, Schefold JC (2018) Serum chloride levels in critical illness—the hidden story. Intensive Care Med Exp 6(1):1–14

    Article  Google Scholar 

  48. Bae CH, Nam SH, Park SM (2002) Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution. Appl Surf Sci 197:628–634. https://doi.org/10.1016/S0169-4332(02)00430-0

    Article  ADS  Google Scholar 

  49. Yu B, Wang X, Qian X, Xing W, Yang H, Ma L, Lin Y, Jiang S, Song L, Hu Y (2014) Functionalized graphene oxide/phosphoramide oligomer hybrids flame retardant prepared via in situ polymerization for improving the fire safety of polypropylene. RSC Adv 4(60):31782–31794

    Article  ADS  CAS  Google Scholar 

  50. Sarkar M, Khandavilli S, Panchagnula R (2006) Development and validation of RP-HPLC and ultraviolet spectrophotometric methods of analysis for the quantitative estimation of antiretroviral drugs in pharmaceutical dosage forms. J Chromatogr B 830(2):349–354. https://doi.org/10.1016/j.jchromb.2005.11.014

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Imran Malik.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1277 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talha, A., Raja, D.A., Hussain, D. et al. Gold nanoparticle-based selective and efficient spectrophotometric assay for the insecticide methamidophos. Microchim Acta 191, 164 (2024). https://doi.org/10.1007/s00604-024-06237-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06237-z

Keywords

Navigation