Skip to main content
Log in

Supported Axisymmetric Tunnels Within Linear Viscoelastic Burgers Rocks

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

An exact closed form solution is derived for the mechanical behaviour of a linear viscoelastic Burgers rock around an axisymmetric tunnel, supported by a linear elastic ring. Analytical formulae are provided for the displacement of the rock/lining interface and for the pressure exerted by the rock on the lining, taking into account the stiffness and its installation time. Results calculated from these formulae do validate the corresponding numerical results of a 2D finite differences code. Further, comparison to previous existing solutions for the same viscoelastic model indicates similarities and differences. A parametric study is performed to investigate the effect of the viscoelastic constants, the stiffness and installation time of the support. The derived closed form solution is used to construct the time-dependent Supported Ground Reaction Curves of the viscoelastic rock, i.e. the time contour plots on the convergence confinement diagram. The importance of the effect of the support on the restrained rock creep and the exerted pressure on the lining, during the design life of a structure, is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Barla G (1995) Squeezing rocks in tunnels. ISRM News J II(3–4):44–49

    Google Scholar 

  • Barla G (2001) Tunnelling under squeezing rock conditions. In: Kolymbas D (ed) Tunnelling mechanics. Eurosummer-School, Innsbruck

  • Berry DS (1967) Deformation of a circular hole driven through a stressed viscoelastic material. Int J Rock Mech Min Sci 4:181–187

    Article  Google Scholar 

  • Boidy A, Bouvard A, Pellet F (2002) Back analysis of time-dependent behaviour of a test gallery in claystone. Tunn Undergr Space Technol 17(4):415–424

    Article  Google Scholar 

  • Bonini M, Debernardi D, Barla M, Barla G (2009) The mechanical behaviour of clay shales and implications on the design of tunnels. Rock Mech Rock Eng 42(2):361–388

    Article  Google Scholar 

  • Chen G, Chugh YP (1996) Estimation of in situ viscoelastic parameters of weak floor strata by plate-loading tests. Geotech Geol Eng 14:151–167

    Article  Google Scholar 

  • Cristescu N (1988) Viscoplastic creep of rocks around a lined tunnel. Int J Plast 4:393–412

    Article  Google Scholar 

  • Cristescu N, Fota D, Medves E (1987) Tunnel support analysis incorporating rock creep. Int J Rock Mech Min Sci Geomech Abstr 24(6):321–330

    Article  Google Scholar 

  • Damjanac B, Fairhurst C (2010) Evidence for a long-term strength threshold in crystalline rock. Rock Mech Rock Eng 43(5):513–531

    Article  Google Scholar 

  • Debernardi D, Barla G (2009) New viscoplastic model for design analysis of tunnels in squeezing conditions. Rock Mech Rock Eng 42(2):259–288

    Article  Google Scholar 

  • Fahimifar A, Farshad MT, Ahmadreza H, Arash V (2010) Analytical solution for the excavation of circular tunnels in a visco-elastic Burger’s material under hydrostatic stress field. Tunn Undergr Space Technol 25(4):297–304

    Article  Google Scholar 

  • Feng X-T, Chen B-R, Yang C, Zhou H (2006) Intelligent analysis of rheological characteristic of rock materials. In: Van Cotthem A, Charlier R, Thimus JF, Tshibangu JP (eds) Proceedings EUROCK 2006—multiphysics coupling and long term behaviour in rock mechanics. Taylor & Francis, London, pp 275–280

  • Fritz P (1984) An analytical solution for axisymmetric tunnel problems in elastoviscoplastic media. Int J Numer Anal Methods Geomech 8:325–342

    Article  Google Scholar 

  • Gnirk PF, Johnson RE (1964) The deformational behaviour of a circular mine shaft situated in a viscoelastic medium under hydrostatic stress. In: Proceedings of the 6th symposium on rock mechanics, University of Missouri (Rolla), pp 231–259

  • Goodman RE (1989) Introduction to rock mechanics. Wiley, New York

    Google Scholar 

  • Irobe M, Terao K, Sato M, Kawamura H (1981) Measurement of viscoelastic property of rock by borehole jack test. In: Proceedings of the international symposium on weak rock, Tokyo, pp 467–471

  • Itasca Cons. Group Inc (2009) FLAC v.6.0: user’s guide. Itasca Cons. Group Inc, Minneapolis, MN

    Google Scholar 

  • Jaeger JC, Cook NGW, Zimmerman RW (2007) Fundamentals of rock mechanics, 4th edn. Blackwell, USA

    Google Scholar 

  • Korzeniowski W (1991) Rheological model of hard rock pillar. Rock Mech Rock Eng 24(3):155–166

    Article  Google Scholar 

  • Ladanyi B, Gill DE (1988) Design of tunnel linings in a creeping rock. Int J Min Geol Eng 6:113–126

    Article  Google Scholar 

  • Lama RD, Vutukuri VS (1978) Handbook on mechanical properties of rocks—testing techniques and results, vol III. Trans Tech Publications, Clausthal

  • Malan DF (2002) Simulating the time-dependent behaviour of excavations in hard rock. Rock Mech Rock Eng 35(4):225–254

    Article  Google Scholar 

  • Malan DF, Vogler UW, Drescher K (1997) Time-dependent behaviour of hard rock in deep level gold mines. J S Afr Inst Min Metall 97:135–147

    Google Scholar 

  • Ottosen NS (1985) Behaviour of viscoelastic–viscoplastic spheres and cylinders—partly plastic vessel walls. Int J Solids Struct 21(6):573–595

    Article  Google Scholar 

  • Ottosen NS (1986) Viscoelastic–viscoplastic formulas for analysis of cavities in rock salt. Int J Rock Mech Min Sci Geomech Abstr 23(3):201–212

    Article  Google Scholar 

  • Pan YW, Dong JJ (1991a) Time-dependent tunnel convergence. I. Formulation of the model. Int J Rock Mech Min Sci Geomech Abstr 28(6):469–475

    Article  Google Scholar 

  • Pan YW, Dong JJ (1991b) Time-dependent tunnel convergence. II. Advance rate and tunnel–support interaction. Int J Rock Mech Min Sci Geomech Abstr 28(6):477–488

    Article  Google Scholar 

  • Pan YW, Huang ZL (1994) A model of the time-dependent interaction between rock and shotcrete support in a tunnel. Int J Rock Mech Min Sci Geomech Abstr 31(3):213–219

    Article  Google Scholar 

  • Panet M (1979) Time-dependent deformations in underground works. In: Proceedings of the 4th conference on ISRM, vol 3. Montreux, pp 279–290

  • Pellet F (2009) Contact between a tunnel lining and a damage-susceptible viscoplastic medium. Special issue of Comput Model Eng Sci, Tech Science Press 52(3):279–295

    Google Scholar 

  • Roberts A (1977) Geotechnology: an introductory text for students and engineers. Pergamon Press, Oxford

  • Sakurai S (1978) Approximate time-dependent analysis of tunnel support structure considering progress of tunnel face. Int J Numer Anal Meth Geomech 2:159–175

    Article  Google Scholar 

  • Sakurai S (1997) Lessons learned from field measurements in tunnelling. Tunn Undergr Space Technol 12(4):453–460

    Article  Google Scholar 

  • Sandrone F, Dudt J-P, Labiouse V, Descoeudres F (2006) Analysis of delayed convergences in a carbon zone of the Lötschberg Tunnel. In: Van Cotthem A, Charlier R, Thimus JF, Tshibangu JP (eds), Proceedings of EUROCK 2006—multiphysics coupling and long term behaviour in rock mechanics. Taylor & Francis, London, pp 351–356

  • Scheidegger AE (1970) On the rheology of rock creep. Rock Mech Rock Eng 2:138–145

    Google Scholar 

  • Sterpi D, Gioda G (2009) Visco-plastic behaviour around advancing tunnels in squeezing rock. Rock Mech Rock Eng 42(2):319–339

    Article  Google Scholar 

  • Sulem J, Panet M, Guenot A (1987a) Closure analysis in deep tunnels. Int J Rock Mech Min Sci Geomech Abstr 24(3):145–154

    Article  Google Scholar 

  • Sulem J, Panet M, Guenot A (1987b) An analytical solution for time-dependent displacements in circular tunnel. Int J Rock Mech Min Sci Geomech Abstr 24(3):155–164

    Article  Google Scholar 

  • Winkel BV, Gerstle KH, Ko HY (1972) Analysis of time-dependent deformation of openings in salt media. Int J Rock Mech Min Sci 9:249–260

    Article  Google Scholar 

  • Zhifa Y, Zhiyin W, Luqing Z, Ruiguang Z, Nianxing X (2001) Back-analysis of viscoelastic displacements in a soft rock road tunnel. Int J Rock Mech Min Sci 38(3):331–341

    Article  Google Scholar 

  • Yu HS (2000) Cavity expansion methods in geomechanics. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavlos Nomikos.

Appendix

Appendix

The constitutive equations of a linear viscoelastic Burgers rock in cylindrical coordinates are given by Eqs. 6 through 8. For plane strain conditions:

$$ \varepsilon_{zz} (t) = 0 $$
(34)

Inserting (34), (9) and (10) in (8) and solving for σ zz (t) yield

$$ \sigma_{zz} (t) = \frac{3KP - Q}{6KP + Q}\left[ {\sigma_{rr} (t) + \sigma_{\theta \theta } (t)} \right] $$
(35)

From (6) and (7) using (34) and (9):

$$ \sigma_{\theta \theta } (t) = \left( {K + \frac{2}{3}\frac{Q}{P}} \right)\varepsilon_{\theta \theta } (t) + \left( {K - \frac{1}{3}\frac{Q}{P}} \right)\varepsilon_{rr} (t) $$
(36)
$$ \sigma_{rr} (t) = \left( {K + \frac{2}{3}\frac{Q}{P}} \right)\varepsilon_{rr} (t) + \left( {K - \frac{1}{3}\frac{Q}{P}} \right)\varepsilon_{\theta \theta } (t) $$
(37)

(35), (36) and (37) are the constitutive equations for plane strain. Writing these equations with strain as a function of stress yields:

$$ \frac{Q}{P}\varepsilon_{\theta \theta } (t) = \frac{2Q + 3KP}{Q + 6KP}\sigma_{\theta \theta } (t) + \frac{Q - 3KP}{Q + 6KP}\sigma_{rr} (t) $$
(38)
$$ \frac{Q}{P}\,\varepsilon_{rr} (t) = \frac{2Q + 3KP}{Q + 6KP}\sigma_{rr} (t) + \frac{Q - 3KP}{Q + 6KP}\sigma_{\theta \theta } (t)\, $$
(39)
$$ \varepsilon_{zz} (t) = 0 $$
(40)

The equilibrium equation for axisymmetry in cylindrical coordinates is

$$ \frac{{{\text{d}}\sigma_{rr} (t)}}{{{\text{d}}r}} + \frac{{\sigma_{rr} (t) - \sigma_{\theta \theta } (t)}}{r} = 0,\quad \sigma_{\theta \theta } (t) = \frac{{{\text{d}}^{2} \Upphi (t)}}{{{\text{d}}r^{2} }},\quad \sigma_{rr} (t) = \frac{1}{r}\frac{{{\text{d}}\Upphi (t)}}{{{\text{d}}r}} $$
(41)

where Φ(t) is the Airy stress function for the viscoelastic problem. The compatibility condition is given by

$$ \frac{{{\text{d}}\varepsilon_{\theta \theta } (t)}}{{{\text{d}}r}} + \frac{{\varepsilon_{\theta \theta } (t) - \varepsilon_{rr} (t)}}{r} = 0 $$
(42)

From (38), (39):

$$ \frac{{{\text{d}}\varepsilon_{\theta \theta } (t)}}{{{\text{d}}r}} = \frac{P}{Q}\left( {\frac{2Q + 3KP}{Q + 6KP}\frac{{{\text{d}}\sigma_{\theta \theta } (t)}}{{{\text{d}}r}} + \frac{Q - 3KP}{Q + 6KP}\frac{{{\text{d}}\sigma_{rr} (t)}}{{{\text{d}}r}}} \right) $$
(43)
$$ \frac{{\varepsilon_{\theta \theta } (t) - \varepsilon_{rr} (t)}}{r} = \frac{P}{Q}\left( {\frac{{\sigma_{\theta \theta } (t) - \sigma_{rr} (t)}}{r}} \right) $$
(44)

Using the equation of equilibrium in (44):

$$ \frac{{\varepsilon_{\theta \theta } (t) - \varepsilon_{rr} (t)}}{r} = \frac{P}{Q}\left( {\frac{{{\text{d}}\sigma_{rr} (t)}}{{{\text{d}}r}}} \right) $$
(45)

Replacing the strains with stresses from the constitutive equations into the equation of compatibility, we derive:

$$ \frac{\text{d}}{{{\text{d}}r}}[\sigma_{\theta \theta } (t) + \sigma_{rr} (t)] = 0 $$
(46)

or, after some mathematical manipulation:

$$ \left( {\frac{{{\text{d}}^{2} }}{{{\text{d}}r^{2} }} + \frac{1}{r}\frac{\text{d}}{{{\text{d}}r}}} \right)[\sigma_{\theta \theta } (t) + \sigma_{rr} (t)] = 0 $$
(47)

Replacing σ θθ (t) and σ rr (t) from (41) into (47):

$$ \left( {\frac{{{\text{d}}^{2} }}{{{\text{d}}r^{2} }} + \frac{1}{r}\frac{\text{d}}{{{\text{d}}r}}} \right)\left( {\frac{{{\text{d}}^{2} }}{{{\text{d}}r^{2} }} + \frac{1}{r}\frac{\text{d}}{{{\text{d}}r}}} \right)\Upphi (t) = 0 \to \nabla^{2} (\nabla^{2} \Upphi ) = 0 $$
(48)

From (48) it is concluded that the stress distribution in the rock is the same whether the rock material is linear elastic or linear viscoelastic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nomikos, P., Rahmannejad, R. & Sofianos, A. Supported Axisymmetric Tunnels Within Linear Viscoelastic Burgers Rocks. Rock Mech Rock Eng 44, 553–564 (2011). https://doi.org/10.1007/s00603-011-0159-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-011-0159-0

Keywords

Navigation