Skip to main content
Log in

Trends and Progress in Nuclear and Hadron Physics: A Straight or Winding Road

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Quantitative calculations of the properties of hadrons and nuclei, with assessed uncertainties, have emerged as competitive with experimental measurements in a number of major cases. We may well be entering an era where theoretical predictions are critical for experimental progress. Cross-fertilization between the fields of relativistic hadronic structure and non-relativistic nuclear structure is readily apparent. Non-perturbative renormalization methods such as similarity renormalization group and Okubo–Lee–Suzuki schemes as well as many-body methods such as coupled cluster, configuration interaction and lattice simulation methods are now employed and advancing in both major areas of physics. New algorithms to apply these approaches on supercomputers are shared among these areas of physics. The roads to success have intertwined with each community taking the lead at various times in the recent past. We briefly sketch these fascinating paths and comment on some symbiotic relationships. We also overview some recent results from the Hamiltonian basis light-front quantization approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.H. Brandow, Linked-cluster expansions for the nuclear many-body problem. Rev. Mod. Phys. 39, 771 (1967)

    Article  ADS  Google Scholar 

  2. B.R. Barrett, P. Navratil, J.P. Vary, Ab initio no core shell model. Prog. Part. Nucl. Phys. 69, 131 (2013)

    Article  ADS  Google Scholar 

  3. R. Roth, T. Ne, H. Feldmeier, Nuclear structure in the framework of the unitary correlation operator method. Prog. Part. Nucl. Phys. 65, 50 (2010)

    Article  ADS  Google Scholar 

  4. P.A.M. Dirac, Forms of relativistic dynamics. Rev. Mod. Phys. 21, 392 (1949)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. S.J. Brodsky, H.-C. Pauli, S. Pinsky, Quantum chromodynamics and other field theories on the light cone. Phys. Rept. 301, 299 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  6. S.D. Glazek, K.G. Wilson, Renormalization of hamiltonians. Phys. Rev. D 48, 5863 (1993)

    Article  ADS  Google Scholar 

  7. F. Wegner, Flow-equations for hamiltonians. Ann. Phys. 506, 7791 (1994)

    Article  Google Scholar 

  8. S.K. Bogner, R.J. Furnstahl, P. Maris, R.J. Perry, A. Schwenk, J.P. Vary, Convergence in the no-core shell model with low-momentum two-nucleon interactions. Nucl. Phys. A 801, 21 (2008)

    Article  ADS  Google Scholar 

  9. F. Coester, Bound states of a many-particle system. Nucl. Phys. 7, 421 (1958)

    Article  Google Scholar 

  10. F. Coester, H. Kuemmel, Short-range correlations in nuclear wave functions. Nucl. Phys. 17, 477 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Kuemmel, A biography of the coupled cluster method. Int. J. Mod. Phys. B 17, 5311 (2003)

    Article  ADS  MATH  Google Scholar 

  12. G. Hagen, T. Papenbrock, M. Hjorth-Jensen, D.J. Dean, Coupled-cluster computations of atomic nuclei. Rept. Prog. Phys. 77(9), 096302 (2014)

    Article  ADS  Google Scholar 

  13. J.R. Hiller, Nonperturbative light-front hamiltonian methods. Prog. Part. Nucl. Phys. 90, 75 (2016)

    Article  ADS  Google Scholar 

  14. J.P. Vary, H. Honkanen, J. Li, P. Maris, S.J. Brodsky, A. Harindranath, G.F. de Teramond, P. Stern-berg, E.G. Ng, C. Yang, Hamiltonian light-front eld theory in a basis function approach. Phys. Rev. C 81, 035205 (2010)

    Article  ADS  Google Scholar 

  15. H. Honkanen, P. Maris, J.P. Vary, S.J. Brodsky, Electron in a transverse harmonic cavity. Phys. Rev. Lett. 106, 061603 (2011)

    Article  ADS  Google Scholar 

  16. J.P. Vary, Hamiltonian light-front field theory: recent progress and tantalizing prospects. Few Body Syst. 52, 331 (2012)

    Article  ADS  Google Scholar 

  17. X. Zhao, A. Ilderton, P. Maris, J.P. Vary, Non-perturbative quantum time evolution on the light-front. Phys. Lett. B 726, 856 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. X. Zhao, A. Ilderton, P. Maris, J.P. Vary, Scattering in time-dependent basis light-front quantization. Phys. Rev. D 88, 065014 (2013)

    Article  ADS  Google Scholar 

  19. B.L.G. Bakker et al., Light-front quantum chromodynamics: a framework for the analysis of hadron physics. Nucl. Phys. Proc. Suppl. 165, 251–252 (2014)

    Google Scholar 

  20. S.J. Brodsky, M. Diehl, D.S. Hwang, Light-cone wavefunction representation of deeply virtual compton scattering. Nucl. Phys. B 596, 99–124 (2001)

    Article  ADS  Google Scholar 

  21. S. Afanasiev et al., Photoproduction of J/psi and of high mass \(e^+e^-\) in ultra-peripheral \(Au+Au\) collisions at \(s**(1/2) = 200\)-GeV-PHENIX Collaboration. Phys. Lett. B 679, 321–329 (2009)

    Article  ADS  Google Scholar 

  22. E. Abbas et al., Charmonium and \(e^+e^-\) pair photoproduction at mid-rapidity in ultra-peripheral Pb-Pb collisions at \(\sqrt{s_{\rm NN}}\)=2.76 TeV [ALICE Collaboration]. Eur. Phys. J. C 73(11), 2617 (2013)

    Article  ADS  Google Scholar 

  23. P. Navratil, J.P. Vary, B.R. Barrett, Properties of \(^{12}\)C in the ab initio nuclear shell model. Phys. Rev. Lett. 84, 5728 (2000)

    Article  ADS  Google Scholar 

  24. P. Navratil, J.P. Vary, B.R. Barrett, Large basis ab initio no-core shell model and its application to \(^{12}\)C. Phys. Rev. C 62, 054311 (2000)

    Article  ADS  Google Scholar 

  25. P. Maris, J.P. Vary, A.M. Shirokov, Ab initio no-core full configuration calculations of light nuclei. Phys. Rev. C 79, 014308 (2009)

    Article  ADS  Google Scholar 

  26. Y. Li, P.W. Wiecki, X. Zhao, P. Maris, J.P. Vary, in Introduction to Basis Light-Front Quantization Approach to QCD Bound State Problems, ed. by A.M. Shirokov, A.I. Mazur. Proceedings of International Conference Nuclear Theory in the Supercomputing Era (NTSE-2013), Ames, IA, USA, May 13-17, 2013 (Pacic National University, Khabarovsk, Russia, 2014), p. 136

  27. P. Maris, P. Wiecki, Y. Li, X. Zhao, J.P. Vary, Bound state calculations in QED and QCD using basis light-front quantization. Acta Phys. Polon. Supp. 6, 321 (2013)

    Article  Google Scholar 

  28. G.F. de Teramond, S.J. Brodsky, Light-front holography: a first approximation to QCD. Phys. Rev. Lett. 102, 081601 (2009)

    Article  ADS  Google Scholar 

  29. S.J. Brodsky, G.F. de Teramond, H.G. Dosch, J. Erlich, Light-front holographic QCD and emerging confinement. Phys. Rept. 584, 1 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. X. Zhao, H. Honkanen, P. Maris, J.P. Vary, S.J. Brodsky, Electron g-2 in light-front quantization. Phys. Lett. B 737, 65 (2014)

    Article  ADS  MATH  Google Scholar 

  31. P. Wiecki, Y. Li, X. Zhao, P. Maris, J.P. Vary, Basis light-front quantization approach to positronium. Phys. Rev. D 91(10), 105009 (2015)

    Article  ADS  Google Scholar 

  32. S. Tang, et al., Form factors of the electron (in preparation)

  33. W. Qian, et al., Bound states of the Yukawa model (in preparation)

  34. Y. Li, P. Maris, X. Zhao, J.P. Vary, Heavy quarkonium in a holographic basis. Phys. Letts. B 758, 118 (2016)

    Article  ADS  Google Scholar 

  35. G. Chen, X. Zhao, Y. Li, P. Maris, K. Tuchin, J.P. Vary, Light-front time evolution in intense fields (in preparation)

  36. X. Zhao, Advances in basis light-front quantization. Few Body Syst. 56(6–9), 257 (2015)

    Article  ADS  Google Scholar 

  37. X. Zhao, Positronium in basis light-front quantization. (invited talk at this meeting)

  38. S.J. Brodsky, D.S. Hwang, B.Q. Ma, I. Schmidt, Light cone representation of the spin and orbital angular momentum of relativistic composite systems. Nucl. Phys. B 593, 311 (2001)

    Article  ADS  MATH  Google Scholar 

  39. K.A. Olive et al., (Particle Data Group), Review of particle physics. Chin. Phys. C 38, 090001 (2014). [http://pdg.lbl.gov]

  40. J.R. Spence, J.P. Vary, Variational tamm-danco treatment of quantum chromodynamics III: a QCD-motivated treatment of meson spectroscopy (in preparation)

  41. H. Crater, P. Van Alstine, Relativistic calculation of the meson spectrum: a fully covariant treatment versus standard treatments. Phys. Rev. D 70, 034026 (2004)

    Article  ADS  Google Scholar 

  42. S.D. Głazek, Similarity flow of a neutral scalar coupled to a fixed source. Acta Phys. Polon. B 42, 1933 (2011)

    Article  Google Scholar 

  43. A.P. Trawiński, S.D. Głazek, S.J. Brodsky, G.F. de Teramond, H.G. Dosch, Eective confining potentials for QCD. Phys. Rev. D 90, 074017 (2014)

    Article  ADS  Google Scholar 

  44. S.S. Chabysheva, J.R. Hiller, Dynamical model for longitudinal wave functions in light-front holo-graphic QCD. Ann. Phys. 337, 143–152 (2013)

    Article  ADS  Google Scholar 

  45. Y. Li, Quarkonium wave functions on the light-front. [arXiv:1612.01259 [Nucl-th]]; paper in these proceedings

  46. T. Frederico, E. Pace, B. Pasquini, G. Salme, Pion generalized parton distributions with covariant and light-front constituent quark models. Phys. Rev. D 80, 054021 (2009)

    Article  ADS  Google Scholar 

  47. M. Diehl, Generalized parton distributions. Phys. Rept. 388, 41 (2003)

    Google Scholar 

  48. S.J. Brodsky, G.F. de Teramond, Light-front dynamics and AdS/QCD correspondence: the pion form factor in the space- and time-like regions. Phys. Rev. D 77, 056007 (2008)

    Article  ADS  Google Scholar 

  49. J.P. Vary, L. Adhikari, G. Chen, Y. Li, P. Maris, X. Zhao, Basis light-front quantization: recent progress and future prospects. Few Body Syst. 57(8), 695 (2016)

    Article  ADS  Google Scholar 

  50. L. Adhikari, Y. Li, X. Zhao, P. Maris, J.P. Vary, A.A. El-Hady, Form factors and generalized parton distributions in basis light-front quantization. Phys. Rev. C 93, 055202 (2016)

    Article  ADS  Google Scholar 

  51. M. Burkardt, Impact parameter dependent parton distributions and off forward parton distributions for \(\zeta \rightarrow 0\). Phys. Rev. D 62, 071503 (2000); Erratum:ibid. 66, 119903(E) (2002)

  52. G. Chen, Y. Li, P. Maris, K. Tuchin, J.P. Vary, Diffractive charmonium spectrum in high energy collisions in the basis light-front quantization approach. [arXiv:1610.04945 [nucl-th]]

  53. H. Kowalski, L. Motyka, G. Watt, Exclusive diffractive processes at HERA within the dipole picture. Phys. Rev. D 74, 074016 (2006)

    Article  ADS  Google Scholar 

  54. S. Chekanov et al., [ZEUS Collaboration], Exclusive electroproduction of J/psi mesons at HERA. Nucl. Phys. B 695, 3 (2004)

    Article  ADS  Google Scholar 

  55. A. Aktas et al., [H1 Collaboration], Elastic \(J/\psi \) production at HERA. Eur. Phys. J. C 46, 585 (2006)

    Article  Google Scholar 

  56. H. Abramowicz et al., [ZEUS Collaboration], Measurement of the cross-section ratio \(\sigma _{\psi (2S)}/ \sigma _{J/\psi (1S)}\) in deep inelastic exclusive ep scattering at HERA. PoS DIS 2015, 078 (2015)

    Google Scholar 

  57. L.D. McLerran, R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei. Phys. Rev. D 49, 2233 (1994)

    Article  ADS  Google Scholar 

  58. T. Lappi, Wilson line correlator in the MV model: relating the glasma to deep inelastic scattering. Eur. Phys. J. C 55, 285 (2008). [arXiv:0711.3039 [hep-ph]]

  59. K. Tuchin, Particle production in strong electromagnetic fields in relativistic heavy-ion collisions. Adv. High Energy Phys. 2013, 490495 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Vary.

Additional information

This article belongs to the Topical Collection “Light Cone 2016”.

Presented at LightCone 2016, Lisbon, Portugal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vary, J.P., Adhikari, L., Chen, G. et al. Trends and Progress in Nuclear and Hadron Physics: A Straight or Winding Road. Few-Body Syst 58, 56 (2017). https://doi.org/10.1007/s00601-016-1210-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-016-1210-1

Navigation