Skip to main content
Log in

Hamiltonian Light-Front Field Theory: Recent Progress and Tantalizing Prospects

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Fundamental theories, such as quantum electrodynamics and quantum chromodynamics promise great predictive power addressing phenomena over vast scales from the microscopic to cosmic scales. However, new non-perturbative tools are required for physics to span from one scale to the next. I outline recent theoretical and computational progress to build these bridges and provide illustrative results for Hamiltonian Light Front Field Theory. One key area is our development of basis function approaches that cast the theory as a Hamiltonian matrix problem while preserving a maximal set of symmetries. Regulating the theory with an external field that can be removed to obtain the continuum limit offers additional possibilities as seen in an application to the anomalous magnetic moment of the electron. Recent progress capitalizes on algorithm and computer developments for setting up and solving very large sparse matrix eigenvalue problems. Matrices with dimensions of 20 billion basis states are now solved on leadership-class computers for their low-lying eigenstates and eigenfunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brodsky S.J., Pauli H.C., Pinsky S.S.: Quantum chromodynamics and other field theories on the light cone. Phys. Rep. 301, 299 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  2. Chakrabarti, D., Harindranath, A., Vary, J.P.: A study of q-qbar states in transverse lattice QCD using alternative fermion formulations. Phys. Rev. D 69, 034502 (2004). hep-ph/0309317

    Google Scholar 

  3. Grunewald D., Ilgenfritz E.M., Prokhvatilov E.V., Pirner H.J.: Formulating light Cone QCD on the lattice. Phys. Rev. D 77, 014512 (2008)

    Article  ADS  Google Scholar 

  4. Vary J.P., Honkanen H., Li J., Maris P., Brodsky S.J., Harindranath A., de Teramond G.F., Sternberg P., Ng E.G., Yang C.: Hamiltonian light-front field theory in a basis function approach. Phys. Rev. C 81, 035205 (2010)

    Article  ADS  Google Scholar 

  5. Honkanen H., Maris P., Vary J.P., Brodsky S.J.: Electron in a transverse harmonic cavity. Phys. Rev. Lett. 106, 061603 (2011)

    Article  ADS  Google Scholar 

  6. Navrátil P., Vary J.P., Barrett B.R.: Properties of 12-C in the ab-initio nuclear shell model. Phys. Rev. Lett. 84, 5728 (2000)

    Article  ADS  Google Scholar 

  7. Navrátil P., Vary J.P., Barrett B.R.: Large-basis ab-initio no-core shell model and its application to 12-C. Phys. Rev. C 62, 054311 (2000)

    Article  ADS  Google Scholar 

  8. Maris, P., Vary, J.P., Shirokov, A.M.: Ab initio no-core full configuration calculations of light nuclei. Phys. Rev. C. 79, 014308 (2011). nucl-th/0808.3420. doi:10.1103/PhysRevC.79.014308

  9. Zhao, X., Honkanen, H., Maris, P., Vary, J.P., Brodsky, S.J.: Electron anomalous magnetic moment in basis light-front quantization approach (see paper in these proceedings)

  10. Hayes A.C., Navrátil P., Vary J.P.: Neutrino-12C scattering in the ab initio shell model with a realistic three-body interaction. Phys. Rev. Lett. 91, 012502 (2003) nucl-th/0305072

    Article  ADS  Google Scholar 

  11. Shirokov A.M., Vary J.P., Mazur A.I., Weber T.A.: Realistic nuclear Hamiltonian: Ab exitu approach. Phys. Lett. B 644, 33 (2007) nucl-th/0512105

    Article  ADS  Google Scholar 

  12. Maris, P., Sosonkina, M., Vary, J.P., Ng, E.G., Yang, C.: Scaling of ab-initio nuclear physics calculations on multicore computer architectures. International Conference on Computer Science, ICCS 2010, Procedia Comp Sci 1, 97 (2010)

  13. Navratil, P., Gueorguiev, V.G., Vary, J.P., Ormand, W.E., Nogga, A.: Structure of A=10-13 nuclei with two- plus three-nucleon interactions from chiral effective field theory. Phys. Rev. Lett. 99, 042501 (2007). nucl-th/0701038

    Google Scholar 

  14. Maris P., Vary J.P., Navratil P., Ormand W.E., Nam H., Dean D.J.: Origin of the anomalous long lifetime of 14C. Phys. Rev. Lett. 106, 202502 (2011)

    Article  ADS  Google Scholar 

  15. Bogner S.K., Furnstahl R.J., Maris P., Perry R.J., Schwenk A., Vary J.P.: Convergence in the no-core shell model with low-momentum two-nucleon interactions. Nucl. Phys. A 801, 21 (2008) nucl-th/0708.3754

    Article  ADS  Google Scholar 

  16. Barrett B.R., Navratil P., Vary J.P.: Ab initio no core shell model. Nucl. Phys. News Int. 21, 5 (2011)

    Article  Google Scholar 

  17. Maris P., Shirokov A.M., Vary J.P.: Ab initio nuclear structure simulations: the speculative 14F nucleus. Phys. Rev. C 81, 021301(R) (2010)

    Article  ADS  Google Scholar 

  18. Negret A. et al.: Gamow-Teller strengths in the A = 14 multiplet: a challenge to the shell model. Phys. Rev. Lett. 97, 062502 (2006)

    Article  ADS  Google Scholar 

  19. Chakrabarti D., Harindranath A., Martinovic L., Vary J.P.: Kinks in discrete light cone quantization. Phys. Lett. B 582, 196 (2004)

    Article  ADS  Google Scholar 

  20. Chakrabarti D., Harindranath A., Martinovic L., Pivovarov G.B., Vary J.P.: Ab initio results for the broken phase of scalar light front field theory. Phys. Lett. B 617, 92 (2005)

    Article  ADS  Google Scholar 

  21. Chakrabarti D., Harindranath A., Vary J.P.: A transition in the spectrum of the topological sector of \({\phi^4_2}\) theory at strong coupling. Phys. Rev. D 71, 125012 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  22. Brodsky S.J., Franke V.A., Hiller J.R., McCartor G., Paston S.A., Prokhvatilov E.V.: A nonperturbative calculation of the electron’s magnetic moment. Nucl. Phys. B 703, 333 (2004)

    Article  ADS  MATH  Google Scholar 

  23. Chabysheva S.S., Hiller J.R.: A nonperturbative calculation of the electron’s magnetic moment with truncation extended to two photons. Phys. Rev. D 81, 074030 (2010)

    Article  ADS  Google Scholar 

  24. Chabysheva S.S., Hiller J.R.: On the nonperturbative solution of Pauli–Villars-regulated light-front QED: a comparison of the sector-dependent and standard parameterizations. Ann. Phys. 325, 2435 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Dalley S., van de Sande B.: Transverse lattice calculation of the pion light-cone wavefunctions. Phys. Rev. D 67, 114507 (2003)

    Article  ADS  Google Scholar 

  26. Zhao, X., Honkanen, H., Maris, P., Vary, J.P., Brodsky, S.J.: Electron in a transverse harmonic cavity (2011, in preparation)

  27. Brodsky S.J., Chakrabarti D., Harindranath A., Mukherjee A., Vary J.P.: Hadron optics: diffraction patterns in deeply virtual Compton scattering. Phys. Lett. B 641, 440 (2006)

    Article  ADS  Google Scholar 

  28. Brodsky S.J., Chakrabarti D., Harindranath A., Mukherjee A., Vary J.P.: Hadron optics in three-dimensional invariant coordinate space from deeply virtual Compton scattering. Phys. Rev. D 75, 014003 (2007)

    Article  ADS  Google Scholar 

  29. Adare, A., et al.: Detailed measurement of the E + E pair continuum in P + P and Au+Au collisions at \({\sqrt{s_{nn}} = 200}\) gev and implications for direct photon production [PHENIX Collaboration]. Phys. Rev. C 81, 034911 (2010)

  30. Ruf M., Mocken G.R., Muller C., Hatsagortsyan K.Z., Keitel C.H.: Pair production in laser fields oscillating in space and time. Phys. Rev. Lett. 102, 080402 (2009)

    Article  ADS  Google Scholar 

  31. Dumlu C.K., Dunne G.V.: The Stokes phenomenon and Schwinger vacuum pair production in time-dependent laser pulses. Phys. Rev. Lett. 104, 250402 (2010)

    Article  ADS  Google Scholar 

  32. Ilderton A.: Trident pair production in strong laser pulses. Phys. Rev. Lett. 106, 020404 (2011)

    Article  ADS  Google Scholar 

  33. Tuchin K.: Photon decay in strong magnetic field in heavy-ion collisions. Phys. Rev. C 83, 017901 (2011)

    Article  ADS  Google Scholar 

  34. de Teramond G.F., Brodsky S.J.: Light-front holography: a first approximation to QCD. Phys. Rev. Lett. 102, 081601 (2009)

    Article  ADS  Google Scholar 

  35. Brodsky S.J., de Teramond G.F.: Light-front hadron dynamics and AdS/CFT correspondence. Phys. Lett. B 582, 211 (2004)

    Article  ADS  Google Scholar 

  36. Karch A., Katz E., Son D.T., Stephanov M.A.: Linear confinement and AdS/QCD. Phys. Rev. D 74, 015005 (2006)

    Article  ADS  Google Scholar 

  37. Karmanov V.A., Mathiot J.F., Smirnov A.V.: Systematic renormalization scheme in light-front dynamics with Fock space truncation. Phys. Rev. D 77, 085028 (2008)

    Article  ADS  Google Scholar 

  38. Schwinger J.S.: On quantum electrodynamics and the magnetic moment of the electron. Phys. Rev. 73, 416 (1948)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Lloyd, R.J., Vary, J.P.: All-charm tetraquarks. Phys. Rev. D 70, 014009 (2004). hep-ph/0311179

    Google Scholar 

  40. Li, J.: Light front Hamiltonian and its application in QCD. Ph.D. thesis, Iowa State University (unpublished, 2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Vary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vary, J.P. Hamiltonian Light-Front Field Theory: Recent Progress and Tantalizing Prospects. Few-Body Syst 52, 331–338 (2012). https://doi.org/10.1007/s00601-011-0286-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-011-0286-x

Keywords

Navigation