Skip to main content

Nuclear Physics from Lattice QCD

  • Chapter
  • First Online:
Lattice QCD for Nuclear Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 889))

Abstract

I present a pedagogical overview of the application of lattice QCD to the physics of multi-hadron systems. This is a relatively new area of research in which progress has been significant in the last few years and the aim of these lectures is to provide a perspective on the current and future scope of this emerging frontier. After reviewing the recent developments that are beginning to enable nuclear physics to be studied from the underlying theory of the Standard Model, I discuss the recent results that have been obtained in the study of two-hadron and multi-hadron systems. I also explore the difficulties particular to lattice QCD calculations of such systems and emphasise the issues that remain to be resolved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is very loose terminology as the ground state should not be thought of as a bare object to which pions are added to get an excited state.

  2. 2.

    At a minimum, stable under the strong interaction.

  3. 3.

    See also the original derivation [125, 227] or [123] for a particularly clear alternate derivation.

  4. 4.

    Working with relativistic particles does not modify the resulting expressions. In the non-relativistic context, the relativistic corrections can be accounted for by changes in higher-derivative operators.

  5. 5.

    With flavour independent boundary conditions, quarks and anti-quarks receive equal and opposite twists so mesonic systems are unaffected. One can introduce flavour-twisted boundary conditions [266270] to modify flavour non-singlet mesonic quantisation conditions, but this introduces difficulties in importance sampling and can only be easily implemented for valence quarks.

  6. 6.

    Only states that are the lightest state with a given set of quantum numbers are asymptotically stable: for hadrons composed of light and strange quarks, only the pion, kaon, proton and Λ, Ξ and Ω baryons are stable under the strong interaction. Interestingly, at unphysically heavy quark masses and finite volume, a number of other states such as the ρ and Δ become stable because the pion mass increases more rapidly than that of other hadrons as the quark masses increase.

  7. 7.

    In the strict definition of a hadron as a localised colourless asymptotic state, what we refer to as a multi-hadron bound state is itself a hadron.

  8. 8.

    In the limit that the masses of both hadrons become infinite, only the first term in Eq. (5.28) survives and an energy-independent local potential can be defined [287292]. In this limit, r also becomes a well-defined quantum number.

  9. 9.

    In a finite volume, it is not obvious that any state can be purely an elastic state, a concept that requires asymptotic separations. Nevertheless, for large volumes, it is perhaps enough to invoke the cluster decomposition property.

  10. 10.

    We note that all of the calculations discussed here are performed at essentially one lattice spacing, a ∼ 0. 1—0.12 fm in the isospin symmetric limit. It is expected that lattice artifacts, which are typically \(\mathcal{O}(a^{2})\) in these calculations, and isospin-breaking effects produce sub-leading modifications to dibaryon energies.

  11. 11.

    It is an interesting and subtle question as to whether a nucleus is indeed more complex than a proton; from the QCD point of view, both are complicated systems made of many quarks, anti-quarks and gluons.

  12. 12.

    The methods of [374, 375] differ in the way in which the lists of weights are constructed. Reference [374] iterates over the full, factorially-large set of possible index values, whereas [375] constructs the index lists recursively by building a multi-baryon system up one baryon at a time. In [376], the recursive approach is further developed with a clever definition of the antisymmetrisation operation.

  13. 13.

    For kaons there is a minor problem with the growth of noise.

  14. 14.

    As discussed above, in [381], a first numerical investigation of matrix elements of multi-pion systems has been presented. Even in this simplest case, theoretical difficulties remain to be resolved.

References

  1. C. Gattringer, C.B. Lang, Lect. Notes Phys. 788, 1 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  2. Particle Data Group, J. Beringer et al., Phys. Rev. D86, 010001 (2012)

    Google Scholar 

  3. H. Rothe, Lattice gauge theories: An introduction. World Sci. Lect. Notes Phys. 43, 1 (1992)

    Article  MathSciNet  Google Scholar 

  4. T. DeGrand, C.E. Detar, Lattice Methods for Quantum Chromodynamics. World Scientific, Singapore (2006)

    Book  MATH  Google Scholar 

  5. S. Durr et al., Science 322, 1224 (2008). arXiv:0906.3599

    Google Scholar 

  6. M. Lüscher, U. Wolff, Nucl. Phys. B339, 222 (1990)

    Article  ADS  Google Scholar 

  7. L. Maiani, M. Testa, Phys. Lett. B245, 585 (1990)

    Article  ADS  Google Scholar 

  8. M. Lüscher, Nucl. Phys. B364, 237 (1991)

    Article  ADS  Google Scholar 

  9. K. Rummukainen, S.A. Gottlieb, Nucl. Phys. B450, 397 (1995). arXiv:hep-lat/9503028

    Google Scholar 

  10. C. Kim, C. Sachrajda, S.R. Sharpe, Nucl. Phys. B727, 218 (2005). arXiv:hep-lat/0507006

    Google Scholar 

  11. N.H. Christ, C. Kim, T. Yamazaki, Phys. Rev. D72, 114506 (2005). arXiv:hep-lat/0507009

    Google Scholar 

  12. M. Lüscher, Commun. Math. Phys. 105, 153 (1986)

    Article  ADS  Google Scholar 

  13. J.J. Dudek, R.G. Edwards, C.E. Thomas, Phys. Rev. D86, 034031 (2012). arXiv:1203.6041

    Google Scholar 

  14. J.J. Dudek, R.G. Edwards, C.E. Thomas, Phys. Rev. D87, 034505 (2013). arXiv:1212.0830

    Google Scholar 

  15. D. Mohler, C. Lang, L. Leskovec, S. Prelovsek, R. Woloshyn, Phys. Rev. Lett. 111, 222001 (2013). arXiv:1308.3175

    Google Scholar 

  16. M.T. Hansen, S.R. Sharpe, Phys. Rev. D86, 016007 (2012). arXiv:1204.0826

    Google Scholar 

  17. S.C. Pieper, R.B. Wiringa, Ann. Rev. Nucl. Part. Sci. 51, 53 (2001). arXiv:nucl-th/0103005

    Google Scholar 

  18. S. Bogner et al., Comput. Phys. Commun. 184, 2235–2250 (2013). arXiv:1304.3713

    Google Scholar 

  19. S.R. Beane, P.F. Bedaque, W.C. Haxton, D.R. Phillips, M.J. Savage, (2000). arXiv:nucl-th/0008064

    Google Scholar 

  20. E. Epelbaum, H.-W. Hammer, U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009). arXiv:0811.1338

    Google Scholar 

  21. A.S. Kronfeld, (2012). arXiv:1209.3468

    Google Scholar 

  22. Z. Fodor, C. Hoelbling, Rev. Mod. Phys. 84, 449 (2012). arXiv:1203.4789

    Google Scholar 

  23. M. Lüscher, Nucl. Phys. B354, 531 (1991)

    Article  ADS  Google Scholar 

  24. H. Hamber, E. Marinari, G. Parisi, C. Rebbi, Nucl. Phys. B225, 475 (1983)

    Article  ADS  Google Scholar 

  25. E. Beth, G. Uhlenbeck, Physica 4, 915 (1937)

    Article  ADS  MATH  Google Scholar 

  26. K. Huang, C. Yang, Phys. Rev. 105, 767 (1957)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. T. Lee, K. Huang, C. Yang, Phys. Rev. 106, 1135 (1957)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. S.R. Beane, P.F. Bedaque, A. Parreño, M.J. Savage, Phys. Lett. B585, 106 (2004)

    Article  ADS  Google Scholar 

  29. D.B. Kaplan, M.J. Savage, M.B. Wise, Phys. Lett. B424, 390 (1998). arXiv:nucl-th/9801034

    Google Scholar 

  30. S. Beane et al., Phys. Rev. D87, 034506 (2013). arXiv:1206.5219

    Google Scholar 

  31. P.F. Bedaque, I. Sato, A. Walker-Loud, Phys. Rev. D73, 074501 (2006). arXiv:hep-lat/0601033

    Google Scholar 

  32. I. Sato, P.F. Bedaque, Phys. Rev. D76, 034502 (2007). arXiv:hep-lat/0702021

    Google Scholar 

  33. X. Li, C. Liu, Phys. Lett. B587, 100 (2004). arXiv:hep-lat/0311035

    Google Scholar 

  34. W. Detmold, M.J. Savage, Nucl. Phys. A743, 170 (2004). arXiv:hep-lat/0403005

    Google Scholar 

  35. X. Feng, K. Jansen, D.B. Renner, PoS LAT2010, 104 (2010). arXiv:1104.0058

    Google Scholar 

  36. N. Li, C. Liu, Phys. Rev. D87, 014502 (2013). arXiv:1209.2201

    Google Scholar 

  37. R.A. Briceno, Z. Davoudi, Phys. Rev. D889, 094507 (2013). arXiv:1204.1110

    Google Scholar 

  38. M. Döring, U.G. Meißner, E. Oset, A. Rusetsky, Eur. Phys. J. A48, 114 (2012)

    Article  ADS  Google Scholar 

  39. Z. Fu, Phys. Rev. D85, 014506 (2012). arXiv:1110.0319

    Google Scholar 

  40. L. Leskovec, S. Prelovsek, Phys. Rev. D85, 114507 (2012). arXiv:1202.2145

    Google Scholar 

  41. S. Bour, S. Koenig, D. Lee, H.W. Hammer, U.-G. Meißner, Phys. Rev. D84, 091503 (2011)

    ADS  Google Scholar 

  42. Z. Davoudi, M.J. Savage, Phys. Rev. D84, 114502 (2011). arXiv:1108.5371

    Google Scholar 

  43. C. Liu, X. Feng, S. He, Int. J. Mod. Phys. A21, 847 (2006). arXiv:hep-lat/0508022

    Google Scholar 

  44. S. He, X. Feng, C. Liu, JHEP 07, 011 (2005). arXiv:hep-lat/0504019

    Google Scholar 

  45. T. Luu, M.J. Savage, Phys. Rev. D83, 114508 (2011). arXiv:1101.3347

    Google Scholar 

  46. J. M.M. Hall et al., PoS LATTICE2012, 145 (2012)

    Google Scholar 

  47. E. Oset, M. Döring, U.G. Meißner, A. Rusetsky, (2011). arXiv:1108.3923

    Google Scholar 

  48. P.F. Bedaque, Phys. Lett. B593, 82 (2004). arXiv:nucl-th/0402051

    Google Scholar 

  49. B.C. Tiburzi, Phys. Lett. B617, 40 (2005). arXiv:hep-lat/0504002

    Google Scholar 

  50. F.-J. Jiang, B. Tiburzi, Phys. Rev. D78, 114505 (2008). arXiv:0810.1495

    Google Scholar 

  51. C. Sachrajda, G. Villadoro, Phys. Lett. B609, 73 (2005). arXiv:hep-lat/0411033

    Google Scholar 

  52. P.F. Bedaque, J.-W. Chen, Phys. Lett. B616, 208 (2005). arXiv:hep-lat/0412023

    Google Scholar 

  53. U. Wiese, Nucl. Phys. Proc. Suppl. 9, 609 (1989)

    Article  ADS  Google Scholar 

  54. T.A. DeGrand, Phys. Rev. D43, 2296 (1991)

    ADS  Google Scholar 

  55. P. Eugenio, PoS ConfinementX, 349 (2012)

    Google Scholar 

  56. P. Wang, Nucl. Phys. Proc. Suppl. 225–227, 97 (2012)

    Article  Google Scholar 

  57. S.A. Gottlieb, K. Rummukainen, Nucl. Phys. Proc. Suppl. 47, 819 (1996). arXiv:hep-lat/9509088

    Google Scholar 

  58. D. Mohler, PoS LATTICE2012, 003 (2012). arXiv:1211.6163

    Google Scholar 

  59. E. Elizalde, Commun. Math. Phys. 198, 83 (1998). arXiv:hep-th/9707257

    Google Scholar 

  60. S. Sasaki, T. Yamazaki, Phys. Rev. D74, 114507 (2006). arXiv:hep-lat/0610081

    Google Scholar 

  61. J. Balog et al., Phys. Rev. D60, 094508 (1999). arXiv:hep-lat/9903036

    Google Scholar 

  62. C. Lin, G. Martinelli, C.T. Sachrajda, M. Testa, Nucl. Phys. B619, 467 (2001). arXiv:hep-lat/0104006

    Google Scholar 

  63. CP-PACS Collaboration, S. Aoki et al., Phys. Rev. D71, 094504 (2005). arXiv:hep-lat/0503025

    Google Scholar 

  64. N. Ishii, S. Aoki, T. Hatsuda, Phys. Rev. Lett. 99, 022001 (2007). arXiv:nucl-th/0611096

    Google Scholar 

  65. S. Aoki et al., PTEP 2012, 01A105 (2012). arXiv:1206.5088

    Google Scholar 

  66. A. Mihaly, H. Fiebig, H. Markum, K. Rabitsch, Phys. Rev. D55, 3077 (1997)

    ADS  Google Scholar 

  67. W. Detmold, K. Orginos, M.J. Savage, Phys. Rev. D76, 114503 (2007). arXiv:hep-lat/0703009

    Google Scholar 

  68. P. Bicudo, M. Wagner, Phys. Rev. D87, 114511 (2013). arXiv:1209.6274

    Google Scholar 

  69. K. Murano, N. Ishii, S. Aoki, T. Hatsuda, Prog. Theor. Phys. 125, 1225 (2011). arXiv:1103.0619

    Google Scholar 

  70. T. Inoue et al., Nucl. Phys. A881, 28 (2012). arXiv:1112.5926

    Google Scholar 

  71. N. Ishii, (2012), presentation at Chiral Dynamics 2012,http://www.jlab.org/conferences/CD12/thursday/Ishii.pdf

  72. S.R. Beane, W. Detmold, K. Orginos, M.J. Savage, Prog. Part. Nucl. Phys. 66, 1 (2011)

    Article  ADS  Google Scholar 

  73. M.C. Birse, (2012). arXiv:1208.4807

    Google Scholar 

  74. S. Aoki, (2009), lectures at 13 th Taiwan Nuclear Physics Summer School, Hsinchu, Taiwan, http://phys.cts.ntu.edu.tw/nuclear/2009/Aoki3.pdf

  75. HAL QCD Collaboration, N. Ishii et al., Phys. Lett. B712, 437 (2012). arXiv:1203.3642

    Google Scholar 

  76. M. Osborne, G.K. Smyth, SIAM J. Sci. Comput. 16, 119 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  77. K. Murano et al., Phys. Lett. B735, 19–24 (2014). arXiv:1305.2293

    Google Scholar 

  78. S. Aoki et al., Phys. Rev. D87, 034512 (2013). arXiv:1212.4896

    Google Scholar 

  79. T. Kurth, N. Ishii, T. Doi, S. Aoki, T. Hatsuda, JHEP 1312, 015 (2013). arXiv:1305.4462

    Google Scholar 

  80. I. Montvay, P. Weisz, Nucl. Phys. B290, 327 (1987)

    Article  ADS  Google Scholar 

  81. C. Gattringer, C. Lang, Phys. Lett. B274, 95 (1992)

    Article  ADS  Google Scholar 

  82. C. Gattringer, C. Lang, Nucl. Phys. B391, 463 (1993). arXiv:hep-lat/9206004

    Google Scholar 

  83. J. Nishimura, Nucl. Phys. Proc. Suppl. 26, 542 (1992)

    Article  ADS  Google Scholar 

  84. M. Göckeler, H.A. Kastrup, J. Westphalen, F. Zimmermann, Nucl. Phys. B425, 413 (1994). arXiv:hep-lat/9402011

    Google Scholar 

  85. S.R. Sharpe, R. Gupta, G.W. Kilcup, Nucl. Phys. B383, 309 (1992)

    Article  ADS  Google Scholar 

  86. CP-PACS Collaboration, T. Yamazaki et al., Phys. Rev. D70, 074513 (2004). arXiv:hep-lat/0402025

    Google Scholar 

  87. J.J. Dudek et al., Phys. Rev. D83, 071504 (2011)

    ADS  Google Scholar 

  88. S.R. Beane et al., Phys. Rev. D85, 034505 (2012). arXiv:1107.5023

    Google Scholar 

  89. Z. Fu, Commun. Theor. Phys. 57, 78 (2012). arXiv:1110.3918

    Google Scholar 

  90. W. Detmold, B. Smigielski, Phys. Rev. D84, 014508 (2011). arXiv:1103.4362

    Google Scholar 

  91. W. Detmold, K. Orginos, Z. Shi, Phys. Rev. D86, 054507 (2012). arXiv:1205.4224

    Google Scholar 

  92. T. Yagi, S. Hashimoto, O. Morimatsu, M. Ohtani, (2011). arXiv:1108.2970

    Google Scholar 

  93. Q. Liu, PoS LAT2009, 101 (2009). arXiv:0910.2658

    Google Scholar 

  94. T. Blum et al., Phys. Rev. D84, 114503 (2011). arXiv:1106.2714

    Google Scholar 

  95. J. Frison et al., PoS LATTICE2010, 139 (2010). arXiv:1011.3413

    Google Scholar 

  96. C. Pelissier, A. Alexandru, Phys. Rev. D87, 014503 (2013). arXiv:1211.0092

    Google Scholar 

  97. K. Sasaki, N. Ishizuka, T. Yamazaki, M. Oka, Prog. Theor. Phys. Suppl. 186, 187 (2010)

    Article  ADS  Google Scholar 

  98. Z. Fu, K. Fu, Phys. Rev. D86, 094507 (2012). arXiv:1209.0350

    Google Scholar 

  99. D. Mohler, S. Prelovsek, R. Woloshyn, Phys. Rev. D87, 034501 (2013). arXiv:1208.4059

    Google Scholar 

  100. K. Liu, Sci. China Phys. Mech. Astron. 55, 2326 (2012)

    Article  ADS  Google Scholar 

  101. G.-Z. Meng et al., Phys. Rev. D80, 034503 (2009). arXiv:0905.0752

    Google Scholar 

  102. S. Prelovsek, L. Leskovec, Phys. Rev. Lett. 111, 192001 (2013). arXiv:1307.5172

    Google Scholar 

  103. S. Ozaki, S. Sasaki, Phys. Rev. D87, 014506 (2013). arXiv:1211.5512

    Google Scholar 

  104. W. Detmold, S. Meinel, Z. Shi, Phys. Rev. D87, 094504 (2013). arXiv:1211.3156

    Google Scholar 

  105. D. Kaplan, A. Nelson, Nucl. Phys. A479, 273 (1988)

    Article  ADS  Google Scholar 

  106. A. Torok et al., Phys. Rev. D81, 074506 (2010). arXiv:0907.1913

    Google Scholar 

  107. C. Lang, V. Verduci, Phys. Rev. D87, 054502 (2013). arXiv:1212.5055

    Google Scholar 

  108. S.R. Beane et al., Phys. Rev. D79, 114502 (2009). arXiv:0903.2990

    Google Scholar 

  109. W. Detmold, A.N. Nicholson, Phys. Rev. D88, 074501 (2013). arXiv:1308.5186

    Google Scholar 

  110. S.R. Beane et al., Phys. Rev. Lett. 109, 172001 (2012). arXiv:1204.3606

    Google Scholar 

  111. S. Beane et al., Phys. Rev. C88(2), 024003 (2013). arXiv:1301.5790

    Google Scholar 

  112. HAL QCD collaboration, T. Inoue et al., Prog. Theor. Phys. 124, 591 (2010). arXiv:1007.3559

    Google Scholar 

  113. M.I. Buchoff, T.C. Luu, J. Wasem, Phys. Rev. D85, 094511 (2012). arXiv:1201.3596

    Google Scholar 

  114. T. Yamazaki, K.-i. Ishikawa, Y. Kuramashi, A. Ukawa, Phys. Rev. D86, 074514 (2012)

    Google Scholar 

  115. S.R. Beane et al., Phys. Rev. Lett. 106, 162001 (2011). arXiv:1012.3812

    Google Scholar 

  116. R.L. Jaffe, Phys. Rev. Lett. 38, 195 (1977). [Erratum-ibid. 38, 617 (1977)]

    Google Scholar 

  117. T. Inoue et al., Phys. Rev. Lett. 106, 162002 (2011). arXiv:1012.5928

    Google Scholar 

  118. S.R. Beane et al., Mod. Phys. Lett. A26, 2587 (2011). arXiv:1103.2821

    Google Scholar 

  119. T. Yamazaki, Y. Kuramashi, A. Ukawa, Phys. Rev. D84, 054506 (2011). arXiv:1105.1418

    Google Scholar 

  120. P. Shanahan, A. Thomas, R. Young, Phys. Rev. Lett. 107, 092004 (2011). arXiv:1106.2851

    Google Scholar 

  121. P. Shanahan, A. Thomas, R. Young, (2013). arXiv:1308.1748

    Google Scholar 

  122. S.R. Beane, W. Detmold, M.J. Savage, Phys. Rev. D76, 074507 (2007). arXiv:0707.1670

    Google Scholar 

  123. W. Detmold, M.J. Savage, Phys. Rev. D77, 057502 (2008). arXiv:0801.0763

    Google Scholar 

  124. K. Polejaeva, A. Rusetsky, Eur. Phys. J. A48, 67 (2012). arXiv:1203.1241

    Google Scholar 

  125. M.T. Hansen, S.R. Sharpe, (2013). arXiv:1311.4848

    Google Scholar 

  126. S.R. Beane et al., Phys. Rev. Lett. 100, 082004 (2008). arXiv:0710.1827

    Google Scholar 

  127. W. Detmold et al., Phys. Rev. D78, 014507 (2008). arXiv:0803.2728

    Google Scholar 

  128. W. Detmold, M.J. Savage, Phys. Rev. D82, 014511 (2010). arXiv:1001.2768

    Google Scholar 

  129. HAL QCD Collaboration, T. Doi, PoS LATTICE2011, 151 (2011). arXiv:1112.4103

    Google Scholar 

  130. S. Tan, Phys. Rev. A78, 013636 (2008). arXiv:0709.2530

    Google Scholar 

  131. B. Smigielski, J. Wasem, Phys. Rev. D79, 054506 (2009). arXiv:0811.4392

    Google Scholar 

  132. B. Borasoy, E. Epelbaum, H. Krebs, D. Lee, U.-G. Meißner, Eur. Phys. J. A31, 105 (2007). arXiv:nucl-th/0611087

    Google Scholar 

  133. E. Epelbaum, H. Krebs, D. Lee, U.-G. Meißner, Eur. Phys. J. A41, 125 (2009). arXiv:0903.1666

    Google Scholar 

  134. E. McCutchan et al., Phys. Rev. Lett. 103, 192501 (2009). arXiv:0907.3688

    Google Scholar 

  135. Z. Shi, W. Detmold, PoS LATTICE2011, 328 (2011). arXiv:1111.1656

    Google Scholar 

  136. Y. Hida, X.S. Li, D.H. Bailey, Algorithms for quad-double precision floating point arithmetic, in Proceedings. 15th IEEE Symposium on Computer Arithmetic, 2001, pp. 155–162. IEEE (2001)

    Google Scholar 

  137. D.H. Bailey, Y. Hida, X.S. Li, B. Thompson, Arprec an arbitrary precision computation package (2002)

    Book  Google Scholar 

  138. T. Doi, M.G. Endres, Comput. Phys. Commun. 184, 117 (2013). arXiv:1205.0585

    Google Scholar 

  139. W. Detmold, K. Orginos, Phys. Rev. D87, 114512 (2013). arXiv:1207.1452

    Google Scholar 

  140. J. Gunther, B.C. Toth, L. Varnhorst, Phys. Rev. D87, 094513 (2013). arXiv:1301.4895

    Google Scholar 

  141. W. Detmold, K. Orginos, M.J. Savage, A. Walker-Loud, Phys. Rev. D78, 054514 (2008). arXiv:0807.1856

    Google Scholar 

  142. Z. Shi, Multi-meson systems form Lattice Quantum Chromodynamics. PhD thesis, College of William & Mary (2013)

    Google Scholar 

  143. D.T. Son, M.A. Stephanov, Phys. Rev. Lett. 86, 592 (2001). arXiv:hep-ph/0005225

    Google Scholar 

  144. W. Detmold, M.J. Savage, Phys. Rev. Lett. 102, 032004 (2009). arXiv:0809.0892

    Google Scholar 

  145. W. Detmold, H.-W. Lin, PoS LATTICE2011, 149 (2011). arXiv:1112.5682

    Google Scholar 

  146. S.R. Beane et al., Phys. Rev. D80, 074501 (2009). arXiv:0905.0466

    Google Scholar 

  147. G.P. Lepage, Invited lectures given at TASI’89 Summer School, Boulder, CO, Jun 4–30, 1989

    Google Scholar 

  148. T. Yamazaki, Y. Kuramashi, A. Ukawa, Phys. Rev. D81, 111504 (2010). arXiv:0912.1383

    Google Scholar 

  149. J.D. Barrow, F.J. Tipler, The Anthropic Cosmological Principle. Clarendon Press, Oxford (1986)

    Google Scholar 

  150. B. Carr, (ed.), Universe of Multiverse? Cambrige University Press, Cambrige (2007)

    Google Scholar 

  151. E. Epelbaum, H. Krebs, T.A. Lahde, D. Lee, U.-G. Meißner, Phys. Rev. Lett. 112502, 110 (2013). arXiv:1212.4181

    Google Scholar 

  152. N. Barnea, L. Contessi, D. Gazit, F. Pederiva, U. van Kolck, (2013). arXiv:1311.4966

    Google Scholar 

  153. M. Lüscher, P. Weisz, JHEP 09, 010 (2001). arXiv:hep-lat/0108014

    Google Scholar 

  154. T. Blum, T. Izubuchi, E. Shintani, Phys. Rev. D88(9), 094503 (2013). arXiv:1208.4349

    Google Scholar 

  155. P. de Forcrand, PoS LAT2009, 010 (2009). arXiv:1005.0539

    Google Scholar 

  156. S. Beane, S. Cohen, W. Detmold, H.W. Lin, M. Savage, (2013). arXiv:1306.6939

    Google Scholar 

  157. H.B. Meyer, (2012). arXiv:1202.6675

    Google Scholar 

  158. T. Blum et al., Phys. Rev. D86, 074513 (2012). arXiv:1206.5142

    Google Scholar 

  159. L. Lellouch, M. Lüscher, Commun. Math. Phys. 219, 31 (2001). arXiv:hep-lat/0003023

    Google Scholar 

  160. V. Bernard, M. Lage, U.-G. Meißner, A. Rusetsky, JHEP 08, 024 (2008). arXiv:0806.4495

    Google Scholar 

  161. B. Tiburzi, PoS LATTICE2011, 020 (2011). arXiv:1110.6842

    Google Scholar 

  162. T. Blum et al., USQCD whitepaper: Lattice qcd at the intensity frontier, http://www.usqcd.org/documents/13flavor.pdf, 2013

  163. N. Christ, T. Izubuchi, C. Sachrajda, A. Soni, J. Yu, Phys. Rev. D88(1), 014508 (2013). arXiv:1212.5931

    Google Scholar 

Download references

Acknowledgements

I warmly thank Stefan Meinel, Zhifeng Shi, Brian Tiburzi and my colleagues in the NPLQCD collaboration for many interesting discussions on the topics of these lectures and Zhifeng Shi for producing Fig. 5.7. I also thank Huey-Wen Lin, Harvey Meyer and David Richards for their hard work in organising this very successful summer school. Finally, I thank the students, in particular Raul Briceno and Zoreh Davoudi, for making the lectures enjoyable. This work was supported by the U.S. Department of Energy through Outstanding Junior Investigator Award DE-SC0001784 and Early Career Award DE-SC0010495 and by the Solomon Buchsbaum Fund at MIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Detmold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Detmold, W. (2015). Nuclear Physics from Lattice QCD. In: Lin, HW., Meyer, H. (eds) Lattice QCD for Nuclear Physics. Lecture Notes in Physics, vol 889. Springer, Cham. https://doi.org/10.1007/978-3-319-08022-2_5

Download citation

Publish with us

Policies and ethics