Surgery Today

, Volume 44, Issue 5, pp 804–811 | Cite as

Regulating surgical oncotaxis to improve the outcomes in cancer patients

  • Toshihiro Hirai
  • Hideo Matsumoto
  • Hisako Kubota
  • Yoshiyuki Yamaguchi
Review Article


Excessive surgical stress and postoperative complications cause a storm of perioperative cytokine release, which has been shown to enhance tumor metastasis in experimental models. We have named this phenomenon “surgical oncotaxis”. The mechanisms that underpin this process are thought to be excessive corticosteroid secretion, coagulopathy in the peripheral vasculature, immune suppression and excessive production of reactive oxygen species. Nuclear factor-kappa B (NFkB) activation plays a key role in these mechanisms. Minimally invasive surgical techniques should be used, and postoperative complications should be avoided whenever possible to lessen the impact of surgical oncotaxis. Furthermore, there may be a role for a small preoperative dose of corticosteroid or the use of free radical scavengers in the perioperative period. Recently, there has been a great deal of interest in omega-3 fatty acid, because it regulates NFkB activation. The use of multimodal treatments that regulate surgical oncotaxis may be as important as chemotherapy for determining the outcome of patients with cancer undergoing surgery.


Surgery Oncotaxis Active oxygen Omega-3 fatty acid 


  1. 1.
    Hattori T, Hamai Y, Ikeda H, Harada T, Ikeda T. Enhancing effect of thoracotomy on tumor growth in rats. Gann. 1978;69:401–6.PubMedGoogle Scholar
  2. 2.
    Hattori T, Hamai Y, Takiyama W, Hirai T, Ikeda T. Enhancing effect of thoracotomy on tumor growth in rats with special reference to the duration and timing of the operation. Gann. 1980;71:280–4.PubMedGoogle Scholar
  3. 3.
    Hirai T, Matsumoto H, Yamashita Y, Urakami A, Iki K, Yamamura M, et al. Surgical oncotaxis—excessive surgical stress and postoperative complications contribute to enhancing tumor metastasis, resulting in a poor prognosis for cancer patients. Ann Thorac Cardiovasc Surg. 2005;11:4–6.PubMedGoogle Scholar
  4. 4.
    Albert D, Zeidman I. Relation of glucocorticoid activity of steroids to number of metastases. Cancer Res. 1962;22:1297–300.PubMedGoogle Scholar
  5. 5.
    Zeidman I. The fate of circulating tumor cells. A mechanism of cortisone action in increasing metastases. Cancer Res. 1962;22:501–3.PubMedGoogle Scholar
  6. 6.
    Kodama M, Kodama T. Enhancing effect of hydrocortisone on hematogenous metastasis of Ehrlich ascites tumor in mice. Cancer Res. 1975;35:1015–21.PubMedGoogle Scholar
  7. 7.
    Hirai T. Experimental studies on tumor enhancing effect of operative stress with special reference to the participation of corticosteroid (in Japanese). Hiroshimadaigaku Igaku Zasshi (Med J Hiroshima Univ). 1985;33:871–82.Google Scholar
  8. 8.
    Glasner A, Avraham R, Rosenne E, Benish M, Zmora O, Shemer S, et al. Improving survival rates in two models of spontaneous postoperative metastasis in mice by combined administration of a beta-adrenergic antagonist and a cyclooxygenase-2 inhibitor. J Immunol. 2010;184:2449–57.PubMedCrossRefGoogle Scholar
  9. 9.
    Kakkar AK, Lorenzo F, Pineo GF, Williamson RCN. Venous thromboembolism and cancer. Bailliere’s Clin Haematol. 1998;11:675–87.CrossRefGoogle Scholar
  10. 10.
    Stouthard JML, Levi M, Hack CE, Veenhof CHN, Romijn HA, Sauerwein HP, et al. Interleukin-6 stimulates coagulation, not fibrinolysis, in humans. Thromb Haemost. 1996;76:738–42.PubMedGoogle Scholar
  11. 11.
    Nawroth PP, Stern DM. Tumor necrosis factor/cachectin-induced modulation of endothelial cell hemostatic properties. Onkologie. 1987;10(254):258.Google Scholar
  12. 12.
    Suemasu K, Ishikawa S. Inhibitive effect of heparin and dextran sulfate on experimental pulmonary metastases. Gann. 1970;61:125–30.PubMedGoogle Scholar
  13. 13.
    Rak J, Milsom C, May L, Klement P, Yu J. Tissue factor in cancer and angiogenesis: the molecular link between genetic tumor progression, tumor neovascularization, and cancer coagulopathy. Semin Thromb Hemost. 2006;32:54–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Kakkar AK, Lemoine NR, Scully MF, Tebbutt S, Williamson RC. Tissue factor expression correlate with histological grade in human pancreatic cancer. Br J Surg. 1995;82:1101–4.PubMedCrossRefGoogle Scholar
  15. 15.
    Nakasaki T, Wada H, Shigemori C, Miki C, Gabazza EC, Mobori T, et al. Expression of tissue factor and vascular endothelial growth factor is associated with angiogenesis in colorectal cancer. Am J Hematol. 2002;69:247–54.PubMedCrossRefGoogle Scholar
  16. 16.
    Sawada M, Miyake S, Ohdama S, Mstsubara O, Masuda S, Yakumaru K, et al. Expression of tissue factor in non-small-cell lung cancers and its relationship to metastasis. Br J Cancer. 1999;79:472–7.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Poon RT, Lau CP, Ho JW, Yu WC, Fan ST, Wong J. Tissue factor expression correlates with tumor angiogenesis and invasiveness in human hepatocellular carcinoma. Clin Cancer Res. 2003;9:5339–45.PubMedGoogle Scholar
  18. 18.
    Takagi T, Sakakura C, Kin S, Nakase Y, Fukuda K, Shimomura K, et al. Dextran sulfate suppresses cell adhesion and cell cycle progression of melanoma cells. Anticancer Res. 2005;25:895–902.PubMedGoogle Scholar
  19. 19.
    DeFeo K, Hayes C, Chernick M, Ryn JV, Gilmour SK. Use of dabigastran etexilate to reduce breast cancer progression. Cancer Biol Ther. 2010;10:1001–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Dolovich LR, Ginsberg JS, Douketis JD, Holbrook AM, Cheah G. A meta-analysis comparing low-molecular-weight heparin with unfractioned heparin in the treatment of venous thromboembolism. Arch Intern Med. 2000;160:181–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Altinbas M, Coskun HS, Er O, Ozkan M, Eser B, Unal A, et al. A randomized clinical trial of combination chemotherapy with and without low-molecular-weight heparin in small cell lung cancer. J Thromb Haemost. 2004;2:1266–71.PubMedCrossRefGoogle Scholar
  22. 22.
    Kakkar AK, Levine MN, Kadziola Z, Lemoine NR, Low V, Patel HK, et al. Low molecular weight heparin, therapy with dalteparin, and survival in advanced cancer: the fragmin advanced malignancy outcome study (FAMOUS). J Clin Oncol. 2004;22:1944–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Kirstein JM, Graham KC, Mackenzie LT, Johnston DE, Martin LJ, Tuck AB, et al. Effect of anti-fibrinolytic therapy on experimental melanoma metastasis. Clin Exp Metastasis. 2009;26:121–31.PubMedCrossRefGoogle Scholar
  24. 24.
    Nadir Y, Brenner B. Heparanase procoagulant activity. Thromb Res. 2012;129:576–9.Google Scholar
  25. 25.
    Ogawa K, Hirai M, Katsube T, Murayama M, Hamaguchi K, Shimakawa T, et al. Suppression of cellular immunity by surgical stress. Surgery. 2000;127:329–36.PubMedCrossRefGoogle Scholar
  26. 26.
    Vallina VL, Velasco JM. The influence of laparoscopy on lymphocyte subpopulations in the surgical patient. Surg Endosc. 1996;10:481–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Shafirb M, Bekesi JG, Papatestas A, Slater G, Aufses AH Jr. Preoperative and postoperative immunological evaluation of patients with colorectal cancer. Cancer. 1980;46:700–5.CrossRefGoogle Scholar
  28. 28.
    Cristaldi M, Rovati M, Elli M, Gerlinzani S, Lesma A, Barzarotti L, et al. Lymphocyte subpopulation changes after open and laparoscopic cholecystectomy: a prospective and comparative study on 38 patients. Surg Laparosc Endosc. 1997;7:255–61.PubMedCrossRefGoogle Scholar
  29. 29.
    Leaver HA, Craig SR, Yap PL, Walker WS. Lymphocyte responses following open and minimally invasive thoracic surgery. Eur J Clin Invest. 2000;30:230–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Ben-Eliyohu S, Page GG, Yirmaiya R, Shakhar G. Evidence that stress and surgical interventions promote tumor development by suppressing natural killer cell activity. Int J Cancer. 1999;80:880–8.CrossRefGoogle Scholar
  31. 31.
    Ahlers O, Nachtigall I, Lenze J, Goldmann A, Schulte E, Hohne C, et al. Intraoperative thoracic epidural anesthesia attenuates stress-induced immunosuppression in patients undergoing major abdominal surgery. Br J Anaesth. 2008;101:781–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Mafdy AM, Galley HF, Abdel-Wahed MA, el-Korny KF, Sheta SA, Webster NR. Differential modulation of interleukin-6 and inter-leukin-10 by diclofenac in patients undergoing major surgery. Br J Anaesth. 2002;88:797–802.CrossRefGoogle Scholar
  33. 33.
    Dithmar S, Rusciano D, Lynn MJ, Lawson DH, Armstrong CA, Grossniklaus HE. Neoadjuvant interferone alfa-2b treatment in a murine model for metastatic ocular melanoma: a preliminary study. Arch Ophthalmol. 2000;118:1085–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Gallagher WJ, Dubinett SM, Hoover HC Jr, Kradin RL. Efficacy of adjuvant interleukin-2 after excision of BALB/c fibrosarcoma. Surgery. 1989;106:120–5.PubMedGoogle Scholar
  35. 35.
    Caprotti R, Bribio F, Fumagalli L, Nobili C, Degrate L, Lissoni P, et al. Free-from-progression period and overall short preoperative immunotherapy with IL-2 increases the survival of pancreatic cancer patients treated with macroscopically radical surgery. Anticancer Res. 2008;28:1951–4.PubMedGoogle Scholar
  36. 36.
    Bravio F, Lissoni P, Fumagalli L, Girlando M, Marsili MT, Nespoli A, et al. Pre-operative IL-2 immunoprophylaxis of cancer recurrence: long term clinical results of a phase II study in radically operable colorectal cancer. Oncol Rep. 1999;6:1205–7.Google Scholar
  37. 37.
    Toge T, Hirai T, Takiyama W, Hattori T. Effects of surgical stress on natural killer activity, proliferative response of spleen cells and cytostatic activity of lung macrophages in rats. Gann. 1981;72:790–4.PubMedGoogle Scholar
  38. 38.
    Hattori T, Hamai Y, Ikeda T, Takiyama W, Hirai T, Miyoshi Y. Inhibitory effects of immunopotentiators on the enhancement of lung metastases induced by operative stress in rats. Gann. 1982;73:132–5.PubMedGoogle Scholar
  39. 39.
    Yamaguchi Y, Hihara J, Hironaka K, Ohshita A, Okita R, Okawaki M, et al. Postoperative immunosuppression cascade and immunotherapy using lymphokine-activated killer cells for patients with esophageal cancer: possible application for compensatory anti-inflammatory response syndrome. Oncol Rep. 2006;15:895–901.PubMedGoogle Scholar
  40. 40.
    Adamson IYR, Young L, Orr FW. Tumor metastasis after hyperoxic injury and repair of the pulmonary endothelium. Lab Invest. 1987;57:71–7.PubMedGoogle Scholar
  41. 41.
    Nonaka Y, Iwagaki H, Kimura T, Fuchimoto S, Orita K. Effect of reactive oxygen intermediates on the in vitro invasive capacity of tumor cells and liver metastasis in mice. Int J Cancer. 1993;54:983–6.PubMedCrossRefGoogle Scholar
  42. 42.
    ten Kate M, van der Wal JB, Sluiter W, Hofland LJ, Jeekel J, Sonneveld P. The role of superoxide anions in the development of distant tumour recurrence. Br J Cancer. 2006;95:1497–503.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Mongaret C, Alexandre J, Thomas-Schoemann A, Bermudez E, Cherau C, Nicco C, et al. Tumor invasion induced by oxidative stress is dependent on membrane ADAM 9 protein and its secreted form. Int J Cancer. 2011;129:791–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Hirai T, Yoshimoto A, Iwata T, Yamashita Y, Kuwahara M, Toge T. Enhancing effect of thoraco-laparotomy on liver metastasis and the role played by active oxygen in its mechanism. Jpn J Surg. 1997;27:1040–5.Google Scholar
  45. 45.
    Hyoudou K, Nishikawa M, Kobayashi Y, Ikemura M, Yamashita F, Hashida M. SOD derivatives prevent metastatic tumor growth aggravated by tumor removal. Clin Exp Metastasis. 2008;25:531–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Sun Y-F, Yang X-R, Zhou J, Qiu S-J, Fan J, Xu Y. Circulating tumor cells: advances in detection methods, biological issues, and clinical relevance. J Cancer Res Clin Oncol. 2011;137:1151–73.PubMedCrossRefGoogle Scholar
  47. 47.
    Rahbari NN, Aigner M, Thorlund K, Mollberg N, Motschall E, Jensen K, et al. Meta-analysis shows that detection of circulating tumor cells indicates poor prognosis in patients with colorectal cancer. Gastroenterology. 2010;138:1714–26.PubMedCrossRefGoogle Scholar
  48. 48.
    Qu Y, Wang J, Ray PS, Guo H, Huang J, Shin-Shim M, et al. Thioredoxin-like 2 regulates human cancer cell growth and metastasis via redox homeostasis and NF-kB signaling. J Clin Invest. 2011;121:212–25.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Tsukioka T, Nishiyama N, Iwata T, Nagano K, Tei K, Suehiro S. Preoperative serum oxidative stress marker as a strong indicator of nodal involvement in clinical stage I lung adenocarcinoma. Int J Clin Oncol. 2012;17:250–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Brokelman WJ, Lansvert M, Borel Rinkes IH, Kinkenbijil JH, Reijinen MM. Peritoneal change due to laparoscopic surgery. Surg Endosc. 2011;25:1–9.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Ishikawa M, Nishioka M, Hanaki N, Miyauchi T, Kashiwagi Y, Ioki H, et al. Perioperative immune response in cancer patients undergoing digestive surgeries. World J Surg Oncol. 2009;7:7.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Brune IB, Wilke W, Hensler T, Feussner H, Holzmann B, Siewert JR, et al. Normal T lymphocyte and monocyte function after minimally invasive surgery. Surg Endosc. 1998;12:1020–4.PubMedCrossRefGoogle Scholar
  53. 53.
    Kloosterman T, von Blomberg BM, Borgstein P, Cuesta MA, Scheper RJ, Meijer S. Unimpaired immune functions after laparoscopic cholecystectomy. Surgery. 2006;139:39–45.CrossRefGoogle Scholar
  54. 54.
    Vittimberga FJ Jr, Foley DP, Meyers WC, Callery MP. Laparoscopic surgery and the systemic immune response. Ann Surg. 1998;227:326–34.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Eisold S, Mehrabi A, Konstantinidis L, Mieth M, Hinz U, Kashfi A, et al. Experimental study of cardiorespiratory and stress factors in esophageal surgery using robot-assisted thoracoscopic or open thoracic approach. Arch Surg. 2008;143:156–63.PubMedCrossRefGoogle Scholar
  56. 56.
    Amin AT, Shiraishi N, Ninomiya S, Tajima M, Inomata M, Kitano S. Increased mRNA expression of epidermal growth factor receptor, human epidermal receptor, and survivin in human gastric cancer after the surgical stress of laparotomy versus carbon dioxide pneumoperitoneum in a murine model. Surg Endosc. 2010;24:1427–33.PubMedCrossRefGoogle Scholar
  57. 57.
    Tsujimoto H, Takahata R, Nomura S, Yaguchi Y, Kumano I, Matsumoto Y, et al. Video-assisted thoracoscopic surgery for esophageal cancer attenuates postoperative systemic responses and pulmonary complications. Surgery. 2012;151:667–73.PubMedCrossRefGoogle Scholar
  58. 58.
    Walker WS, Leaver HA. Immunologic and stress responses following video-assisted thoracic surgery and open pulmonary lobectomy in early stage lung cancer. Thorac Surg Clin. 2007;17:241–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Biere SS, van Berge Henegouwen MI, Maas KW, Bonavina L, Rosman C, Garcia JR, et al. Minimally invasive versus open oesophagectomy for patients with oesophageal cancer: a multicentre, open-label, randomized controlled trial. Lancet. 2012;379:1887–92.PubMedCrossRefGoogle Scholar
  60. 60.
    Rizk NP, Bach PB, Schrag D, Bains MS, Turnbull AD, Karpeh M, et al. The impact of complications on outcomes after resection for esophageal and gastroesophageal junction carcinoma. J Am Coll Surg. 2004;198:42–50.PubMedCrossRefGoogle Scholar
  61. 61.
    Hu Y, Zheng B, Rong T-H, Fu J-H, Zhu Z-H, Yang H, et al. Prognostic analysis of the patients with stage-III esophageal squamous cell carcinoma after radical esophagectomy. Chin J Cancer. 2010;29:178–83.PubMedCrossRefGoogle Scholar
  62. 62.
    Shimada H, Okazumi S, Matsubara H, Nabeya Y, Shiratori T, Hayashi H, et al. Is the surgical stress associated with worse survival in patients with esophageal cancer?—analysis of colon substitution for 37 patients with remnant stomach. Hepatogastroenterology. 2007;54:791–5.PubMedGoogle Scholar
  63. 63.
    Sierzega M, Kolodziejczyk P, Kulig J. Impact of anastomotic leakage on long-term survival after total gastrectomy for carcinoma of the stomach. Br J Surg. 2010;97:1035–42.PubMedCrossRefGoogle Scholar
  64. 64.
    Toshihiro H, Hihara J, Inoue H, Toge T, Inoue Y, Sakaue T. The effect of radical scavenger EPC-K1 and methylprednisolone on reactive substances after surgery (in Japanese). Nippon Syoukakigekagakkaishi (Jpn J Gastroenterol Surg). 2001;34:323–8.Google Scholar
  65. 65.
    Sayama J, Shineha R, Yokota K, Hirayama K, Higuchi N, Ohe H, et al. Control of the excessive reaction after surgery for esophageal carcinoma with preoperative administration of the cortico-steroids (in Japanese). Nippon Syoukakigekagakkaishi (Jpn J Gastroenterol Surg). 1994;27:841–8.Google Scholar
  66. 66.
    Ueda H, Hirakawa H, Shineha R, Sayama J, Nishihira T, Mori S. Postoperative changes of serum IL-6 production and preventive effects of methylprednisolone for mouse experimental surgical stress (in Japanese). Nippon Syoukakigekagakkaishi (Jpn J Gastroenterol Surg). 1994;27:2191.Google Scholar
  67. 67.
    Raimondi AM, Guimaraes HP, Amaral JLG, Leal PHR. Perioperative glucocorticoid administration for prevention of systemic organ failure in patients undergoing esophageal resection for esophageal carcinoma. Sao Paulo Med J. 2006;124:112–5.PubMedCrossRefGoogle Scholar
  68. 68.
    Shimada H, Ochiai T, Okazumi S, Matsubara H, Nabeya Y, Miyazawa Y, et al. Clinical benefits of steroid therapy on surgical stress in patients with esophageal cancer. Surgery. 2000;128:791–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Shimada H, Okazumi S, Matsubara H, Nabeya Y, Hayashi H, Shiratori T, et al. Effects of steroid therapy on postoperative course and survival of patients with thoracic esophageal carcinoma. Esophagus. 2004;1:89–94.CrossRefGoogle Scholar
  70. 70.
    Nishizaki C, Nishikawa M, Yata T, Yamada T, Takahashi Y, Oku M, et al. Inhibition of surgical trauma-enhanced peritoneal dissemination of tumor cells by human catalase derivatives in mice. Free Radic Biol Med. 2011;51:773–9.PubMedCrossRefGoogle Scholar
  71. 71.
    By Ho, Wu YM, Chang KJ, Pan TM. Dimerumic acid inhibits SW620 cell invasion by attenuating H2O2-mediated MMP-7 expression via JNK/C-Jun and ERK/C-Fos activation in an AP-1-dependent manner. Int J Biol Sci. 2011;7:869–80.Google Scholar
  72. 72.
    O’Leary DP, Bhatt L, Woolley JF, Gough DR, Wang JH, Cotter TG, et al. TLR-4 signalling accelerates colon cancer cell adhesion via NF-kB mediated transcriptional up-regulation of Nos-1. PLoS ONE. 2012;7:e44176.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Yuksel M, Okajima K, Uchiba M, Okabe H. Gabexate mesilate, a synthetic protease inhibitor, inhibits lipopolysaccharide-induced tumor necrosis factor-alpha production by inhibiting activation of both nuclear factor-kappaB and activator protein-1 in human monocytes. J Pharmacol Exp Ther. 2003;305:298–305.PubMedCrossRefGoogle Scholar
  74. 74.
    Ohashi I, Nishijima J, Murata A, Tada H, Kato H. Inhibitory effect of a synthetic protease inhibitor (gabexate mesilate) on the respiratory burst oxidase in human neutrophils. J Biochem. 1995;118:1001–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Jung SE, Yun IJ, Youn YK, Lee JE, Ha J, Noh DY, et al. Effect of protease inhibitor on ischemia–reperfusion injury to rat liver. World J Surg. 1999;23:1027–31.PubMedCrossRefGoogle Scholar
  76. 76.
    Goldfarb Y, Shapiro H, Singer P, Kalderon Y, Levi B, Glasner A, et al. Fish oil attenuates surgery-induced immunosuppression, limits post-operative metastatic dissemination and increases long-term recurrence-free survival in rodents inoculated with cancer cells. Clin Nutr. 2012;31:396–404.PubMedCrossRefGoogle Scholar
  77. 77.
    Kontogiannea M, Gupta A, Ntanios F, Graham T, Jones P, Meterissian S. Omega-3 fatty acids decrease endothelial adhesion of human colorectal carcinoma cells. J Surg Res. 2000;92:201–5.PubMedCrossRefGoogle Scholar
  78. 78.
    Gutt CN, Brinkmann L, Mehrabi A, Fonouni H, Muller-Stich BP, Vetter G, et al. Dietary omega-3-polyunsaturated fatty acids prevent the development of metastasis of colon carcinoma in rat liver. Eur J Nutr. 2007;46:279–85.PubMedCrossRefGoogle Scholar
  79. 79.
    Prasad S, Ravindran J, Aggarwal BB. NF-κB and cancer: how intimate is this relationship. Mol Cell Biochem. 2010;336:25–37.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Ghosh-Choudhury T, Mandal CC, Woodruff K, Clair PS, Fernandes G, Choudhury GG, et al. Fish oil targets PTEN to regulate NFκB for downregulation of anti-apoptotic genes in breast tumor growth. Breast Cancer Res Treat. 2009;118:213–8.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Zhao Y, Joshi-Barve S, Barve S, Chen LH. Eicosapentaenoic acid prevents LPS-induced TNF-α expression by preventing NF-κB activation. J Am Coll Nutr. 2004;23:71–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Mishra A, Chaudhary A, Sethi S. Oxidized omega-3 fatty acids inhibit NF-κB activation via a PPARα-dependent pathway. Arterioscler Thromb Vasc Biol. 2004;24:1621–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Jho DH, Cole SM, Lee EM, Espat NJ. Role of omega-3 fatty acid supplementation in inflammation and malignancy. Integr Cancer Ther. 2004;3:98–111.PubMedCrossRefGoogle Scholar
  84. 84.
    Wang J, Yu JC, Kang WM, Ma ZQ. Superiority of a fish oil-enriched emulsion to medium-chain triacylglycerols/long-chain triacylglycerols in gastrointestinal surgery patients: a randomized clinical trial. Nutrition. 2012;28:623–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Toshihiro Hirai
    • 1
  • Hideo Matsumoto
    • 1
  • Hisako Kubota
    • 1
  • Yoshiyuki Yamaguchi
    • 2
  1. 1.Department of Digestive SurgeryKawasaki Medical SchoolKurashikiJapan
  2. 2.Department of Clinical OncologyKawasaki Medical SchoolKurashikiJapan

Personalised recommendations