Skip to main content

Advertisement

Log in

Fish oil targets PTEN to regulate NFκB for downregulation of anti-apoptotic genes in breast tumor growth

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The molecular mechanism for the beneficial effect of fish oil on breast tumor growth is largely undefined. Using the xenograft model in nude mice, we for the first time report that the fish oil diet significantly increased the level of PTEN protein in the breast tumors. In addition, the fish oil diet attenuated the PI 3 kinase and Akt kinase activity in the tumors leading to significant inhibition of NFκB activation. Fish oil diet also prevented the expression of anti-apoptotic proteins Bcl-2 and Bcl-XL in the breast tumors with concomitant increase in caspase 3 activity. To extend these findings we tested the functional effects of DHA and EPA, the two active ω-3 fatty acids of fish oil, on cultured MDA MB-231 cells. In agreement with our in vivo data, DHA and EPA treatment increased PTEN mRNA and protein expression and inhibited the phosphorylation of p65 subunit of NFκB in MDA MB-231 cells. Furthermore, DHA and EPA reduced expression of Bcl-2 and Bcl-XL. NFκB DNA binding activity and NFκB-dependent transcription of Bcl-2 and Bcl-XL genes were also prevented by DHA and EPA treatment. Finally, we showed that PTEN expression significantly inhibited NFκB-dependent transcription of Bcl-2 and Bcl-XL genes. Taken together, our data reveals a novel signaling pathway linking the fish oil diet to increased PTEN expression that attenuates the growth promoting signals and augments the apoptotic signals, resulting in breast tumor regression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

PI:

Phosphatidylinositol

PH:

Pleckstrin homology

EMSA:

Electrophoretic mobility shift assay

LUC:

Luciferase

References

  1. MacLean CH, Newberry SJ, Mojica WA, Khanna P, Issa AM, Suttorp MJ, Lim YW, Traina SB, Hilton L, Garland R et al (2006) Effects of omega-3 fatty acids on cancer risk: a systematic review. JAMA 295(4):403–415. doi:10.1001/jama.295.4.403

    Article  PubMed  CAS  Google Scholar 

  2. Kelsey JL, Horn-Ross PL (1993) Breast cancer: magnitude of the problem and descriptive epidemiology. Epidemiol Rev 15(1):7–16

    PubMed  CAS  Google Scholar 

  3. Lands WE, Hamazaki T, Yamazaki K, Okuyama H, Sakai K, Goto Y, Hubbard VS (1990) Changing dietary patterns. Am J Clin Nutr 51(6):991–993

    PubMed  CAS  Google Scholar 

  4. Chajes V, Sattler W, Stranzl A, Kostner GM (1995) Influence of n-3 fatty acids on the growth of human breast cancer cells in vitro: relationship to peroxides and vitamin-E. Breast Cancer Res Treat 34(3):199–212. doi:10.1007/BF00689711

    Article  PubMed  CAS  Google Scholar 

  5. Grammatikos SI, Subbaiah PV, Victor TA, Miller WM (1994) n-3 and n-6 fatty acid processing and growth effects in neoplastic and non-cancerous human mammary epithelial cell lines. Br J Cancer 70(2):219–227

    PubMed  CAS  Google Scholar 

  6. Rose DP, Connolly JM (1999) Omega-3 fatty acids as cancer chemopreventive agents. Pharmacol Ther 83(3):217–244. doi:10.1016/S0163-7258(99)00026-1

    Article  PubMed  CAS  Google Scholar 

  7. Schley PD, Jijon HB, Robinson LE, Field CJ (2005) Mechanisms of omega-3 fatty acid-induced growth inhibition in MDA-MB-231 human breast cancer cells. Breast Cancer Res Treat 92(2):187–195. doi:10.1007/s10549-005-2415-z

    Article  PubMed  CAS  Google Scholar 

  8. Schley PD, Brindley DN, Field CJ (2007) (n-3) PUFA alter raft lipid composition and decrease epidermal growth factor receptor levels in lipid rafts of human breast cancer cells. J Nutr 137(3):548–553

    PubMed  CAS  Google Scholar 

  9. Stillwell W, Shaikh SR, Zerouga M, Siddiqui R, Wassall SR (2005) Docosahexaenoic acid affects cell signaling by altering lipid rafts. Reprod Nutr Dev 45(5):559–579. doi:10.1051/rnd:2005046

    Article  PubMed  CAS  Google Scholar 

  10. Nicholson KM, Anderson NG (2002) The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 14(5):381–395. doi:10.1016/S0898-6568(01)00271-6

    Article  PubMed  CAS  Google Scholar 

  11. Testa JR, Bellacosa A (2001) AKT plays a central role in tumorigenesis. Proc Natl Acad Sci USA 98(20):10983–10985. doi:10.1073/pnas.211430998

    Article  PubMed  CAS  Google Scholar 

  12. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2(7):489–501. doi:10.1038/nrc839

    Article  PubMed  CAS  Google Scholar 

  13. Marone R, Cmiljanovic V, Giese B, Wymann MP (2008) Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim Biophys Acta 1784(1):159–185

    PubMed  CAS  Google Scholar 

  14. Pawson T, Nash P (2000) Protein–protein interactions define specificity in signal transduction. Genes Dev 14(9):1027–1047

    PubMed  CAS  Google Scholar 

  15. Alessi DR, Deak M, Casamayor A, Caudwell FB, Morrice N, Norman DG, Gaffney P, Reese CB, MacDougall CN, Harbison D et al (1997) 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol 7(10):776–789. doi:10.1016/S0960-9822(06)00336-8

    Article  PubMed  CAS  Google Scholar 

  16. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7(4):261–269. doi:10.1016/S0960-9822(06)00122-9

    Article  PubMed  CAS  Google Scholar 

  17. Hresko RC, Mueckler M (2005) mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem 280(49):40406–40416. doi:10.1074/jbc.M508361200

    Article  PubMed  CAS  Google Scholar 

  18. Stephens L, Anderson K, Stokoe D, Erdjument-Bromage H, Painter GF, Holmes AB, Gaffney PR, Reese CB, McCormick F, Tempst P et al (1998) Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science 279(5351):710–714. doi:10.1126/science.279.5351.710

    Article  PubMed  CAS  Google Scholar 

  19. Troyer DA, Chandrasekar B, Barnes JL, Fernandes G (1997) Calorie restriction decreases platelet-derived growth factor (PDGF)-A and thrombin receptor mRNA expression in autoimmune murine lupus nephritis. Clin Exp Immunol 108(1):58–62. doi:10.1046/j.1365-2249.1997.d01-970.x

    Article  PubMed  CAS  Google Scholar 

  20. Venkatraman JT, Chandrasekar B, Kim JD, Fernandes G (1994) Effects of n-3 and n-6 fatty acids on the activities and expression of hepatic antioxidant enzymes in autoimmune-prone NZBxNZW F1 mice. Lipids 29(8):561–568. doi:10.1007/BF02536628

    Article  PubMed  CAS  Google Scholar 

  21. Yamanaka K, Rocchi P, Miyake H, Fazli L, Vessella B, Zangemeister-Wittke U, Gleave ME (2005) A novel antisense oligonucleotide inhibiting several antiapoptotic Bcl-2 family members induces apoptosis and enhances chemosensitivity in androgen-independent human prostate cancer PC3 cells. Mol Cancer Ther 4(11):1689–1698. doi:10.1158/1535-7163.MCT-05-0064

    Article  PubMed  CAS  Google Scholar 

  22. Virolle T, Adamson ED, Baron V, Birle D, Mercola D, Mustelin T, de Belle I (2001) The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling. Nat Cell Biol 3(12):1124–1128. doi:10.1038/ncb1201-1124

    Article  PubMed  CAS  Google Scholar 

  23. Ghosh-Choudhury N, Mandal CC, Choudhury GG (2007) Statin-induced Ras activation integrates the phosphatidylinositol 3-kinase signal to Akt and MAPK for bone morphogenetic protein-2 expression in osteoblast differentiation. J Biol Chem 282(7):4983–4993. doi:10.1074/jbc.M606706200

    Article  PubMed  CAS  Google Scholar 

  24. Ghosh-Choudhury N, Abboud SL, Mahimainathan L, Chandrasekar B, Choudhury GG (2003) Phosphatidylinositol 3-kinase regulates bone morphogenetic protein-2 (BMP-2)-induced myocyte enhancer factor 2A-dependent transcription of BMP-2 gene in cardiomyocyte precursor cells. J Biol Chem 278(24):21998–22005. doi:10.1074/jbc.M302277200

    Article  PubMed  CAS  Google Scholar 

  25. Ghosh-Choudhury N, Abboud SL, Nishimura R, Celeste A, Mahimainathan L, Choudhury GG (2002) Requirement of BMP-2-induced phosphatidylinositol 3-kinase and Akt serine/threonine kinase in osteoblast differentiation and Smad-dependent BMP-2 gene transcription. J Biol Chem 277(36):33361–33368. doi:10.1074/jbc.M205053200

    Article  PubMed  CAS  Google Scholar 

  26. Ghosh-Choudhury N, Choudhury GG, Harris MA, Wozney J, Mundy GR, Abboud SL, Harris SE (2001) Autoregulation of mouse BMP-2 gene transcription is directed by the proximal promoter element. Biochem Biophys Res Commun 286(1):101–108. doi:10.1006/bbrc.2001.5351

    Article  PubMed  CAS  Google Scholar 

  27. Ghosh-Choudhury N, Singha PK, Woodruff K, St Clair P, Bsoul S, Werner SL, Choudhury GG (2006) Concerted action of Smad and CREB-binding protein regulates bone morphogenetic protein-2-stimulated osteoblastic colony-stimulating factor-1 expression. J Biol Chem 281(29):20160–20170. doi:10.1074/jbc.M511071200

    Article  PubMed  CAS  Google Scholar 

  28. Venkatesan B, Mahimainathan L, Das F, Ghosh-Choudhury N, Ghosh Choudhury G (2007) Downregulation of catalase by reactive oxygen species via PI 3 kinase/Akt signaling in mesangial cells. J Cell Physiol 211(2):457–467. doi:10.1002/jcp.20953

    Article  PubMed  CAS  Google Scholar 

  29. Baker SJ (2007) PTEN enters the nuclear age. Cell 128(1):25–28. doi:10.1016/j.cell.2006.12.023

    Article  PubMed  CAS  Google Scholar 

  30. Saal LH, Holm K, Maurer M, Memeo L, Su T, Wang X, Yu JS, Malmstrom PO, Mansukhani M, Enoksson J et al (2005) PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res 65(7):2554–2559. doi:10.1158/0008-5472-CAN-04-3913

    Article  PubMed  CAS  Google Scholar 

  31. Ghosh-Choudhury N, Woodruff K, Qi W, Celeste A, Abboud SL, Ghosh Choudhury G (2000) Bone morphogenetic protein-2 blocks MDA MB 231 human breast cancer cell proliferation by inhibiting cyclin-dependent kinase-mediated retinoblastoma protein phosphorylation. Biochem Biophys Res Commun 272(3):705–711. doi:10.1006/bbrc.2000.2844

    Article  PubMed  CAS  Google Scholar 

  32. Larue L, Bellacosa A (2005) Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene 24(50):7443–7454. doi:10.1038/sj.onc.1209091

    Article  PubMed  CAS  Google Scholar 

  33. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274. doi:10.1016/j.cell.2007.06.009

    Article  PubMed  CAS  Google Scholar 

  34. Testa JR, Tsichlis PN (2005) AKT signaling in normal and malignant cells. Oncogene 24(50):7391–7393. doi:10.1038/sj.onc.1209100

    Article  PubMed  CAS  Google Scholar 

  35. Kane LP, Shapiro VS, Stokoe D, Weiss A (1999) Induction of NF-kappaB by the Akt/PKB kinase. Curr Biol 9(11):601–604. doi:10.1016/S0960-9822(99)80265-6

    Article  PubMed  CAS  Google Scholar 

  36. Madrid LV, Mayo MW, Reuther JY, Baldwin AS Jr (2001) Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-kappa B through utilization of the Ikappa B kinase and activation of the mitogen-activated protein kinase p38. J Biol Chem 276(22):18934–18940. doi:10.1074/jbc.M101103200

    Article  PubMed  CAS  Google Scholar 

  37. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB (1999) NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401(6748):82–85. doi:10.1038/43466

    Article  PubMed  CAS  Google Scholar 

  38. Sizemore N, Lerner N, Dombrowski N, Sakurai H, Stark GR (2002) Distinct roles of the Ikappa B kinase alpha and beta subunits in liberating nuclear factor kappa B (NF-kappa B) from Ikappa B and in phosphorylating the p65 subunit of NF-kappa B. J Biol Chem 277(6):3863–3869. doi:10.1074/jbc.M110572200

    Article  PubMed  CAS  Google Scholar 

  39. Konishi T, Sasaki S, Watanabe T, Kitayama J, Nagawa H (2006) Overexpression of hRFI inhibits 5-fluorouracil-induced apoptosis in colorectal cancer cells via activation of NF-kappaB and upregulation of BCL-2 and BCL-XL. Oncogene 25(22):3160–3169. doi:10.1038/sj.onc.1209342

    Article  PubMed  CAS  Google Scholar 

  40. Ahn KS, Sethi G, Krishnan K, Aggarwal BB (2007) Gamma-tocotrienol inhibits nuclear factor-kappaB signaling pathway through inhibition of receptor-interacting protein and TAK1 leading to suppression of antiapoptotic gene products and potentiation of apoptosis. J Biol Chem 282(1):809–820. doi:10.1074/jbc.M610028200

    Article  PubMed  CAS  Google Scholar 

  41. Jeong SJ, Pise-Masison CA, Radonovich MF, Park HU, Brady JN (2005) Activated AKT regulates NF-kappaB activation, p53 inhibition and cell survival in HTLV-1-transformed cells. Oncogene 24(44):6719–6728. doi:10.1038/sj.onc.1208825

    Article  PubMed  CAS  Google Scholar 

  42. Perkins ND (2006) Post-translational modifications regulating the activity and function of the nuclear factor kappa B pathway. Oncogene 25(51):6717–6730. doi:10.1038/sj.onc.1209937

    Article  PubMed  CAS  Google Scholar 

  43. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116(2):205–219. doi:10.1016/S0092-8674(04)00046-7

    Article  PubMed  CAS  Google Scholar 

  44. Pugazhenthi S, Nesterova A, Sable C, Heidenreich KA, Boxer LM, Heasley LE, Reusch JE (2000) Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J Biol Chem 275(15):10761–10766. doi:10.1074/jbc.275.15.10761

    Article  PubMed  CAS  Google Scholar 

  45. Gascoyne DM, Kypta RM, Vivanco MM (2003) Glucocorticoids inhibit apoptosis during fibrosarcoma development by transcriptionally activating Bcl-xL. J Biol Chem 278(20):18022–18029. doi:10.1074/jbc.M301812200

    Article  PubMed  CAS  Google Scholar 

  46. Grillot DA, Gonzalez-Garcia M, Ekhterae D, Duan L, Inohara N, Ohta S, Seldin MF, Nunez G (1997) Genomic organization, promoter region analysis, and chromosome localization of the mouse bcl-x gene. J Immunol 158(10):4750–4757

    PubMed  CAS  Google Scholar 

  47. Wang X, Trotman LC, Koppie T, Alimonti A, Chen Z, Gao Z, Wang J, Erdjument-Bromage H, Tempst P, Cordon-Cardo C et al (2007) NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 128(1):129–139. doi:10.1016/j.cell.2006.11.039

    Article  PubMed  CAS  Google Scholar 

  48. Cully M, You H, Levine AJ, Mak TW (2006) Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6(3):184–192. doi:10.1038/nrc1819

    Article  PubMed  CAS  Google Scholar 

  49. Kim RH, Peters M, Jang Y, Shi W, Pintilie M, Fletcher GC, DeLuca C, Liepa J, Zhou L, Snow B et al (2005) DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell 7(3):263–273. doi:10.1016/j.ccr.2005.02.010

    Article  PubMed  CAS  Google Scholar 

  50. Saal LH, Gruvberger-Saal SK, Persson C, Lovgren K, Jumppanen M, Staaf J, Jonsson G, Pires MM, Maurer M, Holm K et al (2008) Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair. Nat Genet 40(1):102–107. doi:10.1038/ng.2007.39

    Article  PubMed  CAS  Google Scholar 

  51. Anti M, Marra G, Armelao F, Bartoli GM, Ficarelli R, Percesepe A, De Vitis I, Maria G, Sofo L, Rapaccini GL et al (1992) Effect of omega-3 fatty acids on rectal mucosal cell proliferation in subjects at risk for colon cancer. Gastroenterology 103(3):883–891

    PubMed  CAS  Google Scholar 

  52. Burns CP, Halabi S, Clamon GH, Hars V, Wagner BA, Hohl RJ, Lester E, Kirshner JJ, Vinciguerra V, Paskett E (1999) Phase I clinical study of fish oil fatty acid capsules for patients with cancer cachexia: cancer, leukemia group B study 9473. Clin Cancer Res 5(12):3942–3947

    PubMed  CAS  Google Scholar 

  53. Hardman WE, Avula CP, Fernandes G, Cameron IL (2001) Three percent dietary fish oil concentrate increased efficacy of doxorubicin against MDA-MB 231 breast cancer xenografts. Clin Cancer Res 7(7):2041–2049

    PubMed  CAS  Google Scholar 

  54. Wymann MP, Marone R (2005) Phosphoinositide 3-kinase in disease: timing, location, and scaffolding. Curr Opin Cell Biol 17(2):141–149. doi:10.1016/j.ceb.2005.02.011

    Article  PubMed  CAS  Google Scholar 

  55. Zhao JJ, Roberts TM (2006) PI3 kinases in cancer: from oncogene artifact to leading cancer target. Sci STKE 2006(365):pe52. doi:10.1126/stke.3652006pe52

    Article  PubMed  Google Scholar 

  56. Cantley LC, Neel BG (1999) New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA 96(8):4240–4245. doi:10.1073/pnas.96.8.4240

    Article  PubMed  CAS  Google Scholar 

  57. Rameh LE, Cantley LC (1999) The role of phosphoinositide 3-kinase lipid products in cell function. J Biol Chem 274(13):8347–8350. doi:10.1074/jbc.274.13.8347

    Article  PubMed  CAS  Google Scholar 

  58. Chang HW, Aoki M, Fruman D, Auger KR, Bellacosa A, Tsichlis PN, Cantley LC, Roberts TM, Vogt PK (1997) Transformation of chicken cells by the gene encoding the catalytic subunit of PI 3-kinase. Science 276(5320):1848–1850. doi:10.1126/science.276.5320.1848

    Article  PubMed  CAS  Google Scholar 

  59. Bachman KE, Argani P, Samuels Y, Silliman N, Ptak J, Szabo S, Konishi H, Karakas B, Blair BG, Lin C et al (2004) The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol Ther 3(8):772–775

    Article  PubMed  CAS  Google Scholar 

  60. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ et al (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304(5670):554. doi:10.1126/science.1096502

    Article  PubMed  CAS  Google Scholar 

  61. Samuels Y, Diaz LA Jr, Schmidt-Kittler O, Cummins JM, Delong L, Cheong I, Rago C, Huso DL, Lengauer C, Kinzler KW et al (2005) Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 7(6):561–573. doi:10.1016/j.ccr.2005.05.014

    Article  PubMed  CAS  Google Scholar 

  62. Isakoff SJ, Engelman JA, Irie HY, Luo J, Brachmann SM, Pearline RV, Cantley LC, Brugge JS (2005) Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res 65(23):10992–11000. doi:10.1158/0008-5472.CAN-05-2612

    Article  PubMed  CAS  Google Scholar 

  63. Benistant C, Chapuis H, Roche S (2000) A specific function for phosphatidylinositol 3-kinase alpha (p85alpha–p110alpha) in cell survival and for phosphatidylinositol 3-kinase beta (p85alpha–p110beta) in de novo DNA synthesis of human colon carcinoma cells. Oncogene 19(44):5083–5090. doi:10.1038/sj.onc.1203871

    Article  PubMed  CAS  Google Scholar 

  64. Knobbe CB, Reifenberger G (2003) Genetic alterations and aberrant expression of genes related to the phosphatidyl-inositol-3′-kinase/protein kinase B (Akt) signal transduction pathway in glioblastomas. Brain Pathol 13(4):507–518

    PubMed  CAS  Google Scholar 

  65. Kang S, Denley A, Vanhaesebroeck B, Vogt PK (2006) Oncogenic transformation induced by the p110beta, -gamma, and -delta isoforms of class I phosphoinositide 3-kinase. Proc Natl Acad Sci USA 103(5):1289–1294. doi:10.1073/pnas.0510772103

    Article  PubMed  CAS  Google Scholar 

  66. Altomare DA, Testa JR (2005) Perturbations of the AKT signaling pathway in human cancer. Oncogene 24(50):7455–7464. doi:10.1038/sj.onc.1209085

    Article  PubMed  CAS  Google Scholar 

  67. Bellacosa A, de Feo D, Godwin AK, Bell DW, Cheng JQ, Altomare DA, Wan M, Dubeau L, Scambia G, Masciullo V et al (1995) Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer 64(4):280–285. doi:10.1002/ijc.2910640412

    Article  PubMed  CAS  Google Scholar 

  68. Cheng JQ, Godwin AK, Bellacosa A, Taguchi T, Franke TF, Hamilton TC, Tsichlis PN, Testa JR (1992) AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci USA 89(19):9267–9271. doi:10.1073/pnas.89.19.9267

    Article  PubMed  CAS  Google Scholar 

  69. Brugge J, Hung MC, Mills GB (2007) A new mutational AKTivation in the PI3K pathway. Cancer Cell 12(2):104–107. doi:10.1016/j.ccr.2007.07.014

    Article  PubMed  CAS  Google Scholar 

  70. Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage S et al (2007) A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448(7152):439–444. doi:10.1038/nature05933

    Article  PubMed  CAS  Google Scholar 

  71. Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K, Lee JH, Ciarallo S, Catzavelos C, Beniston R et al (2002) PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med 8(10):1153–1160. doi:10.1038/nm761

    Article  PubMed  CAS  Google Scholar 

  72. Shin I, Yakes FM, Rojo F, Shin NY, Bakin AV, Baselga J, Arteaga CL (2002) PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med 8(10):1145–1152. doi:10.1038/nm759

    Article  PubMed  CAS  Google Scholar 

  73. Viglietto G, Motti ML, Bruni P, Melillo RM, D’Alessio A, Califano D, Vinci F, Chiappetta G, Tsichlis P, Bellacosa A et al (2002) Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med 8(10):1136–1144. doi:10.1038/nm762

    Article  PubMed  CAS  Google Scholar 

  74. Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC (2001) Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol 3(3):245–252. doi:10.1038/35060032

    Article  PubMed  CAS  Google Scholar 

  75. Kwiatkowski DJ, Manning BD (2005) Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways. Hum Mol Genet 14 Spec No. 2:R251–R258

    Google Scholar 

  76. Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, Carr SA, Sabatini DM (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25(6):903–915. doi:10.1016/j.molcel.2007.03.003

    Article  PubMed  CAS  Google Scholar 

  77. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91(2):231–241. doi:10.1016/S0092-8674(00)80405-5

    Article  PubMed  CAS  Google Scholar 

  78. Datta SR, Katsov A, Hu L, Petros A, Fesik SW, Yaffe MB, Greenberg ME (2000) 14–3-3 Proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation. Mol Cell 6(1):41–51. doi:10.1016/S1097-2765(00)00006-X

    Article  PubMed  CAS  Google Scholar 

  79. Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung MC (2001) HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 3(11):973–982. doi:10.1038/ncb1101-973

    Article  PubMed  CAS  Google Scholar 

  80. Mayo LD, Donner DB (2001) A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA 98(20):11598–11603. doi:10.1073/pnas.181181198

    Article  PubMed  CAS  Google Scholar 

  81. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6):857–868. doi:10.1016/S0092-8674(00)80595-4

    Article  PubMed  CAS  Google Scholar 

  82. Dijkers PF, Birkenkamp KU, Lam EW, Thomas NS, Lammers JW, Koenderman L, Coffer PJ (2002) FKHR-L1 can act as a critical effector of cell death induced by cytokine withdrawal: protein kinase B-enhanced cell survival through maintenance of mitochondrial integrity. J Cell Biol 156(3):531–542. doi:10.1083/jcb.200108084

    Article  PubMed  CAS  Google Scholar 

  83. Majumder PK, Sellers WR (2005) Akt-regulated pathways in prostate cancer. Oncogene 24(50):7465–7474. doi:10.1038/sj.onc.1209096

    Article  PubMed  CAS  Google Scholar 

  84. Tran H, Brunet A, Griffith EC, Greenberg ME (2003) The many forks in FOXO’s road. Sci STKE 2003(172):RE5. doi:10.1126/stke.2003.172.re5m

    Article  PubMed  Google Scholar 

  85. Chapman NR, Europe-Finner GN, Robson SC (2004) Expression and deoxyribonucleic acid-binding activity of the nuclear factor kappaB family in the human myometrium during pregnancy and labor. J Clin Endocrinol Metab 89(11):5683–5693. doi:10.1210/jc.2004-0873

    Article  PubMed  CAS  Google Scholar 

  86. Mattioli I, Sebald A, Bucher C, Charles RP, Nakano H, Doi T, Kracht M, Schmitz ML (2004) Transient and selective NF-kappa B p65 serine 536 phosphorylation induced by T cell costimulation is mediated by I kappa B kinase beta and controls the kinetics of p65 nuclear import. J Immunol 172(10):6336–6344

    PubMed  CAS  Google Scholar 

  87. Vermeulen L, De Wilde G, Notebaert S, Vanden Berghe W, Haegeman G (2002) Regulation of the transcriptional activity of the nuclear factor-kappaB p65 subunit. Biochem Pharmacol 64(5–6):963–970. doi:10.1016/S0006-2952(02)01161-9

    Article  PubMed  CAS  Google Scholar 

  88. Angileri FF, Aguennouz M, Conti A, La Torre D, Cardali S, Crupi R, Tomasello C, Germano A, Vita G, Tomasello F (2008) Nuclear factor-kappaB activation and differential expression of survivin and Bcl-2 in human grade 2–4 astrocytomas. Cancer 112(10):2258–2266

    Article  PubMed  CAS  Google Scholar 

  89. Upadhyay AK, Singh S, Chhipa RR, Vijayakumar MV, Ajay AK, Bhat MK (2006) Methyl-beta-cyclodextrin enhances the susceptibility of human breast cancer cells to carboplatin and 5-fluorouracil: involvement of Akt, NF-kappaB and Bcl-2. Toxicol Appl Pharmacol 216(2):177–185. doi:10.1016/j.taap.2006.05.009

    Article  PubMed  CAS  Google Scholar 

  90. Takase O, Minto AW, Puri TS, Cunningham PN, Jacob A, Hayashi M, Quigg RJ (2008) Inhibition of NF-kappaB-dependent Bcl-xL expression by clusterin promotes albumin-induced tubular cell apoptosis. Kidney Int 73(5):567–577. doi:10.1038/sj.ki.5002563

    Article  PubMed  CAS  Google Scholar 

  91. Gilmore TD (2006) Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25(51):6680–6684. doi:10.1038/sj.onc.1209954

    Article  PubMed  CAS  Google Scholar 

  92. Hayden MS, West AP, Ghosh S (2006) NF-kappaB and the immune response. Oncogene 25(51):6758–6780. doi:10.1038/sj.onc.1209943

    Article  PubMed  CAS  Google Scholar 

  93. Yeh YY, Chiao CC, Kuo WY, Hsiao YC, Chen YJ, Wei YY, Lai TH, Fong YC, Tang CH (2008) TGF-beta1 increases motility and alphavbeta3 integrin up-regulation via PI3K, Akt and NF-kappaB-dependent pathway in human chondrosarcoma cells. Biochem Pharmacol 75(6):1292–1301. doi:10.1016/j.bcp.2007.11.017

    Article  PubMed  CAS  Google Scholar 

  94. Haller D, Russo MP, Sartor RB, Jobin C (2002) IKK beta and phosphatidylinositol 3-kinase/Akt participate in non-pathogenic Gram-negative enteric bacteria-induced RelA phosphorylation and NF-kappa B activation in both primary and intestinal epithelial cell lines. J Biol Chem 277(41):38168–38178. doi:10.1074/jbc.M205737200

    Article  PubMed  CAS  Google Scholar 

  95. Strassheim D, Asehnoune K, Park JS, Kim JY, He Q, Richter D, Kuhn K, Mitra S, Abraham E (2004) Phosphoinositide 3-kinase and Akt occupy central roles in inflammatory responses of Toll-like receptor 2-stimulated neutrophils. J Immunol 172(9):5727–5733

    PubMed  CAS  Google Scholar 

  96. Spierings D, McStay G, Saleh M, Bender C, Chipuk J, Maurer U, Green DR (2005) Connected to death: the (unexpurgated) mitochondrial pathway of apoptosis. Science 310(5745):66–67. doi:10.1126/science.1117105

    Article  PubMed  CAS  Google Scholar 

  97. Watson MR, Wallace K, Gieling RG, Manas DM, Jaffray E, Hay RT, Mann DA, Oakley F (2008) NF-kappaB is a critical regulator of the survival of rodent and human hepatic myofibroblasts. J Hepatol 48(4):589–597. doi:10.1016/j.jhep.2007.12.019

    Article  PubMed  CAS  Google Scholar 

  98. Toruner M, Fernandez-Zapico M, Sha JJ, Pham L, Urrutia R, Egan LJ (2006) Antianoikis effect of nuclear factor-kappaB through up-regulated expression of osteoprotegerin, BCL-2, and IAP-1. J Biol Chem 281(13):8686–8696. doi:10.1074/jbc.M512178200

    Article  PubMed  CAS  Google Scholar 

  99. Tsukahara T, Kannagi M, Ohashi T, Kato H, Arai M, Nunez G, Iwanaga Y, Yamamoto N, Ohtani K, Nakamura M et al (1999) Induction of Bcl-x(L) expression by human T-cell leukemia virus type 1 Tax through NF-kappaB in apoptosis-resistant T-cell transfectants with Tax. J Virol 73(10):7981–7987

    PubMed  CAS  Google Scholar 

  100. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R et al (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275(5308):1943–1947. doi:10.1126/science.275.5308.1943

    Article  PubMed  CAS  Google Scholar 

  101. Stiles B, Groszer M, Wang S, Jiao J, Wu H (2004) PTENless means more. Dev Biol 273(2):175–184. doi:10.1016/j.ydbio.2004.06.008

    Article  PubMed  CAS  Google Scholar 

  102. Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273(22):13375–13378. doi:10.1074/jbc.273.22.13375

    Article  PubMed  CAS  Google Scholar 

  103. Maehama T, Dixon JE (1999) PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol 9(4):125–128. doi:10.1016/S0962-8924(99)01519-6

    Article  PubMed  CAS  Google Scholar 

  104. Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H, Morrison SJ (2006) PTEN dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441(7092):475–482. doi:10.1038/nature04703

    Article  PubMed  CAS  Google Scholar 

  105. He XC, Yin T, Grindley JC, Tian Q, Sato T, Tao WA, Dirisina R, Porter-Westpfahl KS, Hembree M, Johnson T et al (2007) PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nat Genet 39(2):189–198. doi:10.1038/ng1928

    Article  PubMed  CAS  Google Scholar 

  106. Stambolic V, Tsao MS, Macpherson D, Suzuki A, Chapman WB, Mak TW (2000) High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten +/− mice. Cancer Res 60(13):3605–3611

    PubMed  CAS  Google Scholar 

  107. Li G, Robinson GW, Lesche R, Martinez-Diaz H, Jiang Z, Rozengurt N, Wagner KU, Wu DC, Lane TF, Liu X et al (2002) Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland. Development 129(17):4159–4170

    PubMed  CAS  Google Scholar 

  108. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988. doi:10.1073/pnas.0530291100

    Article  PubMed  CAS  Google Scholar 

  109. Zhou J, Wulfkuhle J, Zhang H, Gu P, Yang Y, Deng J, Margolick JB, Liotta LA, Petricoin EIII, Zhang Y (2007) Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci USA 104(41):16158–16163. doi:10.1073/pnas.0702596104

    Article  PubMed  Google Scholar 

  110. Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M, Caparros E, Buteau J, Brown K, Perkins SL et al (2007) Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 13(10):1203–1210. doi:10.1038/nm1636

    Article  PubMed  CAS  Google Scholar 

  111. Stambolic V, MacPherson D, Sas D, Lin Y, Snow B, Jang Y, Benchimol S, Mak TW (2001) Regulation of PTEN transcription by p53. Mol Cell 8(2):317–325. doi:10.1016/S1097-2765(01)00323-9

    Article  PubMed  CAS  Google Scholar 

  112. Patel L, Pass I, Coxon P, Downes CP, Smith SA, Macphee CH (2001) Tumor suppressor and anti-inflammatory actions of PPARgamma agonists are mediated via upregulation of PTEN. Curr Biol 11(10):764–768. doi:10.1016/S0960-9822(01)00225-1

    Article  PubMed  CAS  Google Scholar 

  113. Vasudevan KM, Gurumurthy S, Rangnekar VM (2004) Suppression of PTEN expression by NF-kappa B prevents apoptosis. Mol Cell Biol 24(3):1007–1021. doi:10.1128/MCB.24.3.1007-1021.2004

    Article  PubMed  CAS  Google Scholar 

  114. Wang Q, Zhou Y, Wang X, Chung DH, Evers BM (2007) Regulation of PTEN expression in intestinal epithelial cells by c-Jun NH2-terminal kinase activation and nuclear factor-kappaB inhibition. Cancer Res 67(16):7773–7781. doi:10.1158/0008-5472.CAN-07-0187

    Article  PubMed  CAS  Google Scholar 

  115. Xia D, Srinivas H, Ahn YH, Sethi G, Sheng X, Yung WK, Xia Q, Chiao PJ, Kim H, Brown PH et al (2007) Mitogen-activated protein kinase kinase-4 promotes cell survival by decreasing PTEN expression through an NF kappa B-dependent pathway. J Biol Chem 282(6):3507–3519. doi:10.1074/jbc.M610141200

    Article  PubMed  CAS  Google Scholar 

  116. Nakamura N, Ramaswamy S, Vazquez F, Signoretti S, Loda M, Sellers WR (2000) Forkhead transcription factors are critical effectors of cell death and cell cycle arrest downstream of PTEN. Mol Cell Biol 20(23):8969–8982. doi:10.1128/MCB.20.23.8969-8982.2000

    Article  PubMed  CAS  Google Scholar 

  117. Ramaswamy S, Nakamura N, Vazquez F, Batt DB, Perera S, Roberts TM, Sellers WR (1999) Regulation of G1 progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3-kinase/Akt pathway. Proc Natl Acad Sci USA 96(5):2110–2115. doi:10.1073/pnas.96.5.2110

    Article  PubMed  CAS  Google Scholar 

  118. Wu M, Min C, Wang X, Yu Z, Kirsch KH, Trackman PC, Sonenshein GE (2007) Repression of BCL2 by the tumor suppressor activity of the lysyl oxidase propeptide inhibits transformed phenotype of lung and pancreatic cancer cells. Cancer Res 67(13):6278–6285. doi:10.1158/0008-5472.CAN-07-0776

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH RO1 AR52425, DOD Breast cancer Concept Award, Morrison Trust Fund and VA Merit Review grants to NGC. GGC is supported by NIH RO1 DK 50190, VA Merit Review and Juvenile Diabetes Research Foundation Regular Research Grants. GGC is recipient of the Research Career Scientist Award from the Department of Veterans Affairs. GF is supported by NIH RO1 AG023648.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandini Ghosh-Choudhury.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

(TIF 155 kb)

Supplementary Figure 2

(TIF 86 kb)

Supplementary Figure 3

(TIF 88 kb)

Supplementary Figure 4

(TIF 88 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh-Choudhury, T., Mandal, C.C., Woodruff, K. et al. Fish oil targets PTEN to regulate NFκB for downregulation of anti-apoptotic genes in breast tumor growth. Breast Cancer Res Treat 118, 213–228 (2009). https://doi.org/10.1007/s10549-008-0227-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0227-7

Keywords

Navigation