Skip to main content

Advertisement

Log in

Effect of anti-fibrinolytic therapy on experimental melanoma metastasis

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Anti-fibrinolytic agents such as aprotinin and ε-aminocaproic acid (EACA) are used clinically to decrease peri-operative bleeding. Use of these treatments during cancer-related surgeries has led to investigation of the effect of fibrinolysis inhibition on cancer cell spread. The ability of aprotinin to reduce proteolytic activity of proteases required for metastasis suggests that it could have an anti-metastatic effect in patients undergoing tumor resection. However, many metastatic cells in the vasculature of a secondary tissue are associated with a micro-thrombus. The association of tumor cells with thrombi has been shown to increase their survival; therefore inhibition of plasmin-mediated fibrinolysis might instead increase metastatic cell survival by enhancing the association between thrombi and tumor cells. The goal of this work was to determine the effect of anti-fibrinolytic treatment on experimental metastasis and to establish the role of coagulation factors in this effect. The metastatic ability of B16F10 melanoma cells was evaluated in vivo following cell or animal pre-treatment with aprotinin or EACA. Additionally, a novel in vivo technique was developed, to permit analysis of tumor cell association with thrombi in the lung microvasculature using confocal microscopy. Aprotinin and EACA treatment of mice resulted in a significant increase in lung metastasis. Aprotinin treatment increased the size of thrombi in association with cells arrested in lung capillaries. This study suggests that clinical use of anti-fibrinolytic agents for cancer-related surgeries could result in increased metastatic ability of those cells shed immediately prior to and during surgery, and that this approach thus requires further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EACA:

ε-Aminocaproic acid

TXA:

Tranexamic acid

MMP:

Matrix metalloproteinase

ECM:

Extracellular matrix

CMFDA:

5-Chloromethylfluorescein diacetate

H&E:

Hematoxylin and eosin

TF:

Tissue factor

CP:

Cancer procoagulant

LLC:

Lewis lung carcinoma

NK:

Natural killer immune cells

References

  1. Henry DA, Carless PA, Moxey AJ et al (2007) Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database of Syste Rev (Online: Update Software), (4), CD001886

  2. Royston D, Bidstrup BP, Taylor KM et al (1987) Effect of aprotinin on need for blood transfusion after repeat open-heart surgery. Lancet 2(8571):1289–1291. doi:10.1016/S0140-6736(87)91190-1

    Article  PubMed  CAS  Google Scholar 

  3. Levi M, Cromheecke ME, de Jonge E et al (1999) Pharmacological strategies to decrease excessive blood loss in cardiac surgery: a meta-analysis of clinically relevant endpoints. Lancet 354(9194):1940–1947. doi:10.1016/S0140-6736(99)01264-7

    Article  PubMed  CAS  Google Scholar 

  4. Landis RC, Asimakopoulos G, Poullis M et al (2001) The antithrombotic and antiinflammatory mechanisms of action of aprotinin. Ann Thorac Surg 72(6):2169–2175. doi:10.1016/S0003-4975(01)02821-1

    Article  PubMed  CAS  Google Scholar 

  5. Alston TA (2004) Aprotinin. Int Anesthesiol Clin 42(4):81–91. doi:10.1097/00004311-200404240-00009

    Article  PubMed  CAS  Google Scholar 

  6. Mangano DT, Miao Y, Vuylsteke A et al (2007) Mortality associated with aprotinin during 5 years following coronary artery bypass graft surgery. J Am Med Assoc 297(5):471–479. doi:10.1001/jama.297.5.471

    Article  CAS  Google Scholar 

  7. Fergusson DA, Hebert PC, Mazer CD et al (2008) A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N Engl J Med 358(22):2319–2331

    Article  PubMed  CAS  Google Scholar 

  8. Brockway WJ, Castellino FJ (1971) The mechanism of the inhibition of plasmin activity by ε-aminocaproic acid. J Biol Chem 246(14):4641–4647

    CAS  Google Scholar 

  9. Amar D, Grant FM, Zhang H et al (2003) Antifibrinolytic therapy and perioperative blood loss in cancer patients undergoing major orthopedic surgery. Anesthesiology 98(2):337–342. doi:10.1097/00000542-200302000-00011

    Article  PubMed  CAS  Google Scholar 

  10. Lentschener C, Benhamou D, Mercier FJ et al (1997) Aprotinin reduces blood loss in patients undergoing elective liver resection. Anesth Analg 84(4):875–881. doi:10.1097/00000539-199704000-00032

    Article  PubMed  CAS  Google Scholar 

  11. Chambers AF, Matrisian LM (1997) Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst 89(17):1260–1270. doi:10.1093/jnci/89.17.1260

    Article  PubMed  CAS  Google Scholar 

  12. Putnam JB, Royston D, Chambers AF et al (2003) Evaluating the role of serine protease inhibition in the management of tumor micrometastases. Oncology (Williston Park, N.Y.), 17(10, Suppl 10), 9–30 (quiz 1–2)

    Google Scholar 

  13. Collen D (2001) Ham-wasserman lecture: role of the plasminogen system in fibrin-homeostasis and tissue remodeling. Hematology 1–9. doi:10.1182/asheducation-2001.1.1

  14. Nyberg P, Ylipalosaari M, Sorsa T et al (2006) Trypsins and their role in carcinoma growth. Exp Cell Res 312(8):1219–1228. doi:10.1016/j.yexcr.2005.12.024

    Article  PubMed  CAS  Google Scholar 

  15. Crissman JD, Hatfield JS, Menter DG et al (1988) Morphological study of the interaction of intravascular tumor cells with endothelial cells and subendothelial matrix. Cancer Res 48(14):4065–4072

    PubMed  CAS  Google Scholar 

  16. Im JH, Fu W, Wang H et al (2004) Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early metastatic colony formation. Cancer Res 64(23):8613–8619. doi:10.1158/0008-5472.CAN-04-2078

    Article  PubMed  CAS  Google Scholar 

  17. Palumbo JS, Talmage KE, Massari JV et al (2005) Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 105(1):178–185. doi:10.1182/blood-2004-06-2272

    Article  PubMed  CAS  Google Scholar 

  18. Palumbo JS, Kombrinck KW, Drew AF et al (2000) Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood 96(10):3302–3309

    PubMed  CAS  Google Scholar 

  19. Staton CA, Brown NJ, Lewis CE (2003) The role of fibrinogen and related fragments in tumour angiogenesis and metastasis. Expert Opin Biol Ther 3(7):1105–1120. doi:10.1517/14712598.3.7.1105

    Article  PubMed  CAS  Google Scholar 

  20. Nash GF, Turner LF, Scully MF et al (2002) Platelets and cancer. Lancet Oncol 3(7):425–430. doi:10.1016/S1470-2045(02)00789-1

    Article  PubMed  CAS  Google Scholar 

  21. Yu J, Ustach C, Kim HR (2003) Platelet-derived growth factor signaling and human cancer. J Biochem Mol Biol 36(1):49–59

    PubMed  CAS  Google Scholar 

  22. Mehta P (1984) Potential role of platelets in the pathogenesis of tumor metastasis. Blood 63(1):55–63

    PubMed  CAS  Google Scholar 

  23. Reijerkerk A, Voest EE, Gebbink MF (2000) No grip, no growth: the conceptual basis of excessive proteolysis in the treatment of cancer. Eur J Cancer 36(13 Spec No):1695–1705

    Article  PubMed  CAS  Google Scholar 

  24. Caine GJ, Lip GY, Blann AD (2004) Platelet-derived vegf, flt-1, angiopoietin-1 and p-selectin in breast and prostate cancer: Further evidence for a role of platelets in tumour angiogenesis. Ann Med 36(4):273–277. doi:10.1080/07853890410026098

    Article  PubMed  CAS  Google Scholar 

  25. Rofstad EK, Halsor EF (2000) Vascular endothelial growth factor, interleukin 8, platelet-derived endothelial cell growth factor, and basic fibroblast growth factor promote angiogenesis and metastasis in human melanoma xenografts. Cancer Res 60(17):4932–4938

    PubMed  CAS  Google Scholar 

  26. Bruggemann LW, Versteeg HH, Niers TM et al (2008) Experimental melanoma metastasis in lungs of mice with congenital coagulation disorders. J Cell Mol Med. doi:10.1111/j.1582-4934.2008.00316.x

    PubMed  Google Scholar 

  27. Turner GA, Weiss L (1981) Analysis of aprotinin-induced enhancement of metastasis of lewis lung tumors in mice. Cancer Res 41(7):2576–2580

    PubMed  CAS  Google Scholar 

  28. Boeryd B, Hagmar B, Johnsson G et al (1974) Effects of eaca, amcha and guanethidine on metastases induced by intravenously injected tumour cells. Pathol Eur 9(2):119–123

    PubMed  CAS  Google Scholar 

  29. Uetsuji S, Yamamura M, Takai S et al (1992) Effect of aprotinin on metastasis of lewis lung tumor in mice. Surg Today 22(5):439–442. doi:10.1007/BF00308795

    Article  PubMed  CAS  Google Scholar 

  30. Giraldi T, Nisi C, Sava G (1977) Lysosomal enzyme inhibitors and antimetastatic activity in the mouse. Eur J Cancer 13(11):1321–1323

    PubMed  CAS  Google Scholar 

  31. Stein-Werblowsky R (1980) On the prevention of haematogenous tumour metastasis to liver and lung. Experientia 36(1):108–109. doi:10.1007/BF02004004

    Article  PubMed  CAS  Google Scholar 

  32. Hill RP, Chambers AF, Ling V et al (1984) Dynamic heterogeneity: rapid generation of metastatic variants in mouse b16 melanoma cells. Science 224(4652):998–1001. doi:10.1126/science.6719130

    Article  PubMed  CAS  Google Scholar 

  33. Goring DR, Rossant J, Clapoff S et al (1987) In situ detection of beta-galactosidase in lenses of transgenic mice with a gamma-crystallin/lacz gene. Science 235(4787):456–458. doi:10.1126/science.3099390

    Article  PubMed  CAS  Google Scholar 

  34. Esumi N, Fan D, Fidler IJ (1991) Inhibition of murine melanoma experimental metastasis by recombinant desulfatohirudin, a highly specific thrombin inhibitor. Cancer Res 51(17):4549–4556

    PubMed  CAS  Google Scholar 

  35. Rasband WS Imagej. National Institutes of Health 1997–2006, Bethesda. http://rsb.info.nih.gov/ij/

  36. Cameron MD, Schmidt EE, Kerkvliet N et al (2000) Temporal progression of metastasis in lung: Cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res 60(9):2541–2546

    PubMed  CAS  Google Scholar 

  37. Khanna C, Hunter K (2005) Modeling metastasis in vivo. Carcinogenesis 26(3):513–523. doi:10.1093/carcin/bgh261

    Article  PubMed  CAS  Google Scholar 

  38. Luzzi KJ, MacDonald IC, Schmidt EE et al (1998) Multistep nature of metastatic inefficiency: Dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 153(3):865–873

    PubMed  CAS  Google Scholar 

  39. Brown DC, Purushotham AD, Birnie GD et al (1995) Detection of intraoperative tumor cell dissemination in patients with breast cancer by use of reverse transcription and polymerase chain reaction. Surgery 117(1):95–101. doi:10.1016/S0039-6060(05)80235-1

    Article  PubMed  CAS  Google Scholar 

  40. Crissman JD, Hatfield J, Schaldenbrand M et al (1985) Arrest and extravasation of b16 amelanotic melanoma in murine lungs. A light and electron microscopic study. Lab Invest 53(4):470–478

    PubMed  CAS  Google Scholar 

  41. Camerer E, Qazi AA, Duong DN et al (2004) Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood 104(2):397–401. doi:10.1182/blood-2004-02-0434

    Article  PubMed  CAS  Google Scholar 

  42. Mousa SA, Linhardt R, Francis JL et al (2006) Anti-metastatic effect of a non-anticoagulant low-molecular-weight heparin versus the standard low-molecular-weight heparin, enoxaparin. Thromb Haemost 96(6):816–821

    PubMed  CAS  Google Scholar 

  43. Nieswandt B, Hafner M, Echtenacher B et al (1999) Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res 59(6):1295–1300

    PubMed  CAS  Google Scholar 

  44. Bereczky B, Gilly R, Raso E et al (2005) Selective antimetastatic effect of heparins in preclinical human melanoma models is based on inhibition of migration and microvascular arrest. Clin Exp Metastasis 22(1):69–76. doi:10.1007/s10585-005-3859-6

    Article  PubMed  CAS  Google Scholar 

  45. Palumbo JS, Potter JM, Kaplan LS et al (2002) Spontaneous hematogenous and lymphatic metastasis, but not primary tumor growth or angiogenesis, is diminished in fibrinogen-deficient mice. Cancer Res 62(23):6966–6972

    PubMed  CAS  Google Scholar 

  46. Vaporciyan AA, Putnam JB Jr, Smythe WR (2004) The potential role of aprotinin in the perioperative management of malignant tumors. J Am Coll Surg 198(2):266–278. doi:10.1016/j.jamcollsurg.2003.09.022

    Article  PubMed  Google Scholar 

  47. Stein-Werblowsky R (1980) On the prevention of haematogenous tumor metastases rats. The role of the proteinase inhibitor “Trasylol”. J Cancer Res Clin Oncol 97(2):129–135. doi:10.1007/BF00409898

    Article  PubMed  CAS  Google Scholar 

  48. Smorenburg SM, Van Noorden CJ (2001) The complex effects of heparins on cancer progression and metastasis in experimental studies. Pharmacol Rev 53(1):93–105

    PubMed  CAS  Google Scholar 

  49. Bobek V, Kovarik J (2004) Antitumor and antimetastatic effect of warfarin and heparins. Biomed pharmacother 58(4):213–219

    Article  PubMed  CAS  Google Scholar 

  50. Niers TM, Klerk CP, DiNisio M et al (2007) Mechanisms of heparin induced anti-cancer activity in experimental cancer models. Crit Rev Oncol Hematol 61(3):195–207. doi:10.1016/j.critrevonc.2006.07.007

    Article  PubMed  CAS  Google Scholar 

  51. Klerk CP, Smorenburg SM, Otten HM et al (2005) The effect of low molecular weight heparin on survival in patients with advanced malignancy. J Clin Oncol 23(10):2130–2135. doi:10.1200/JCO.2005.03.134

    Article  PubMed  CAS  Google Scholar 

  52. Kakkar AK, Levine MN, Kadziola Z et al (2004) Low molecular weight heparin, therapy with dalteparin, and survival in advanced cancer: the fragmin advanced malignancy outcome study (famous). J Clin Oncol 22(10):1944–1948. doi:10.1200/JCO.2004.10.002

    Article  PubMed  CAS  Google Scholar 

  53. De Cicco M (2004) The prothrombotic state in cancer: pathogenic mechanisms. Crit Rev Oncol Hematol 50(3):187–196. doi:10.1016/j.critrevonc.2003.10.003

    Article  PubMed  Google Scholar 

  54. Palumbo JS, Talmage KE, Massari JV et al (2007) Tumor cell-associated tissue factor and circulating hemostatic factors cooperate to increase metastatic potential through natural killer cell-dependent and -independent mechanisms. Blood 110(1):133–141. doi:10.1182/blood-2007-01-065995

    Article  PubMed  CAS  Google Scholar 

  55. Biggerstaff JP, Weidow B, Vidosh J et al (2006) Soluble fibrin inhibits monocyte adherence and cytotoxicity against tumor cells: implications for cancer metastasis. Thromb J 4:12. doi:10.1186/1477-9560-4-12

    Article  PubMed  Google Scholar 

  56. Honn KV, Tang DG, Grossi IM et al (1994) Enhanced endothelial cell retraction mediated by 12(s)-hete: A proposed mechanism for the role of platelets in tumor cell metastasis. Exp Cell Res 210(1):1–9. doi:10.1006/excr.1994.1001

    Article  PubMed  CAS  Google Scholar 

  57. Honn KV, Tang D (1992) Hemostasis and malignancy: an overview. Cancer Metastasis Rev 11(3–4):223–226. doi:10.1007/BF01307178

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by grant #042511 from the Canadian Institutes of Health Research (to AFC, ICM, and ABT) and by Bayer Pharmaceuticals. JMK is supported by a National Sciences and Engineering Council of Canada Post-Graduate Research Award. AFC is Canada Research Chair in Oncology and receives salary support from the Canada Research Chairs Program. The authors thank Kyle MacLean for his assistance with confocal microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann F. Chambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirstein, J.M., Graham, K.C., MacKenzie, L.T. et al. Effect of anti-fibrinolytic therapy on experimental melanoma metastasis. Clin Exp Metastasis 26, 121–131 (2009). https://doi.org/10.1007/s10585-008-9221-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-008-9221-z

Keywords

Navigation