Makki K, Deehan EC, Walter J et al (2018) The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23:705–715. https://doi.org/10.1016/j.chom.2018.05.012
CAS
Article
PubMed
Google Scholar
Ley RE, Bäckhed F, Turnbaugh P et al (2005) Obesity alters gut microbial ecology. PNAS 102(31):1070–11075. https://doi.org/10.1073/pnas.0504978102
CAS
Article
Google Scholar
Kreznar JH, Keller MP, Traeger LL et al (2017) Host genotype and gut microbiome modulate insulin secretion and diet-induced metabolic phenotypes. Cell Rep 18(7):1739–1750. https://doi.org/10.1016/j.celrep.2017.01.062
CAS
Article
PubMed
PubMed Central
Google Scholar
Federici M (2019) Gut microbiome and microbial metabolites a new system affecting metabolic disorders. J Endocrinol Invest 42(9):1011–1018. https://doi.org/10.1007/s40618-019-01022-9
CAS
Article
PubMed
Google Scholar
Salgaço MK, Oliveira LGS, Costa GN et al (2019) Relationship between gut microbiota, probiotics, and type 2 diabetes mellitus. Appl Microbiol Biotechnol 103(23–24):9229–9238. https://doi.org/10.1007/s00253-019-10156-y
CAS
Article
PubMed
Google Scholar
Kappel BA, Federici M (2019) Gut microbiome and cardiometabolic risk. Rev Endocr Metab Disord 20(4):399–406. https://doi.org/10.1007/s11154-019-09533-9
Article
PubMed
Google Scholar
Abdul Rahim MBH, Chilloux J, Martinez-Gili L et al (2019) Diet induced metabolic changes of the human gut microbiome: importance of short-chain fatty acids, methylamines and indoles. Acta Diabetol. 56:493–500
CAS
Article
PubMed
PubMed Central
Google Scholar
Rothschild D, Weissbrod O, Barkan E et al (2018) Environment dominates over host genetics in shaping human gut microbiota. Nature 555:210–215. https://doi.org/10.1038/nature25973
CAS
Article
PubMed
Google Scholar
Lynch SV, Pedersen O (2016) The human intestinal microbiome in health and disease. N Engl J Med 375(24):2369–2379. https://doi.org/10.1056/NEJMra1600266
CAS
Article
PubMed
Google Scholar
Flint HJ, Scott KP, Louis P et al (2012) The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9(10):577–589. https://doi.org/10.1038/nrgastro.2012.156
CAS
Article
PubMed
Google Scholar
Zhang X, Shen D, Fang Z et al (2013) Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE 8(8):e71108. https://doi.org/10.1371/journal.pone.0071108
CAS
Article
PubMed
PubMed Central
Google Scholar
Wu H, Tremaroli V, Schmidt C et al (2020) The gut microbiota in prediabetes and diabetes: a population-based cross-sectional study. Cell Metab. 32:379–390
CAS
Article
PubMed
Google Scholar
Karlsson FH, Tremaroli V, Nookaew I et al (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498:99–103. https://doi.org/10.1038/nature12198
CAS
Article
PubMed
Google Scholar
Qin J, Li Y, Cai Z et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60. https://doi.org/10.1038/nature11450
CAS
Article
PubMed
Google Scholar
Sanna S, van Zuydam NR, Mahajan A et al (2019) Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet 51:600–605. https://doi.org/10.1038/s41588-019-0350-x
CAS
Article
PubMed
PubMed Central
Google Scholar
De Filippo C, Cavalieri D, Di Paola M et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107:14691–14696. https://doi.org/10.1073/pnas.1005963107
Article
PubMed
PubMed Central
Google Scholar
Garcia-Mantrana I, Selma-Royo M, Alcantara C et al (2018) Shifts on gut microbiota associated to mediterranean diet adherence and specific dietary intakes on general adult population. Front Microbiol 9:890. https://doi.org/10.3389/fmicb.2018.00890
Article
PubMed
PubMed Central
Google Scholar
Gutiérrez-Díaz I, Fernández-Navarro T, Sánchez B et al (2016) Mediterranean diet and faecal microbiota: a transversal study. Food Funct 7:2347–2356. https://doi.org/10.1039/C6FO00105J
CAS
Article
PubMed
Google Scholar
Mitsou EK, Kakali A, Antonopoulou S et al (2017) Adherence to the Mediterranean diet is associated with the gut microbiota pattern and gastrointestinal characteristics in an adult population. Br J Nutr 117:1645–1655. https://doi.org/10.1017/S0007114517001593
CAS
Article
PubMed
Google Scholar
De Filippis F, Pellegrini N, Vannini L et al (2016) High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65:1812–1821. https://doi.org/10.1136/gutjnl-2015-309957
CAS
Article
PubMed
Google Scholar
David LA, Maurice CF, Carmody RN et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563. https://doi.org/10.1038/nature12820
CAS
Article
PubMed
Google Scholar
Vitale M, Giacco R, Laiola M et al (2020) Acute and chronic improvement in postprandial glucose metabolism by a diet resembling the traditional Mediterranean dietary pattern: can SCFAs play a role? Clin Nutr S0261–5614(20):30260. https://doi.org/10.1016/j.clnu.2020.05.025
CAS
Article
Google Scholar
Zhao L, Zhang F, Ding X et al (2018) Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359:1151–1156. https://doi.org/10.1126/science.aao5774
CAS
Article
PubMed
Google Scholar
Haro C, Montes-Borrego M, Rangel-Zúñiga OA et al (2016) Two healthy diets modulate gut microbial community improving insulin sensitivity in a human obese population. J Clin Endocrinol Metab 101:233–242. https://doi.org/10.1210/jc.2015-3351
CAS
Article
PubMed
Google Scholar
Hald S, Schioldan AG, Moore ME et al (2016) Effects of arabinoxylan and resistant starch on intestinal microbiota and short-chain fatty acids in subjects with metabolic syndrome: a randomised crossover study. PLoS ONE 11(7):e0159223. https://doi.org/10.1371/journal.pone.0159223.eCollection
Article
PubMed
PubMed Central
Google Scholar
Vetrani C, Costabile G, Luongo D et al (2016) Effects of whole-grain cereal foods on plasma short chain fatty acid concentrations in individuals with the metabolic syndrome. Nutrition 32:217–221. https://doi.org/10.1016/j.nut.2015.08.006
CAS
Article
PubMed
Google Scholar
Kovatcheva-Datchary P, Nilsson A, Akrami R et al (2015) Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of prevotella. Cell Metab 22:971–982. https://doi.org/10.1016/j.cmet.2015.10.001
CAS
Article
PubMed
Google Scholar
Nilsson AC, Johansson-Boll EV, Björck IM (2015) Increased gut hormones and insulin sensitivity index following a 3-d intervention with a barley kernel-based product: a randomised cross-over study in healthy middle-aged subjects. Br J Nutr 114:899–907. https://doi.org/10.1017/S0007114515002524
CAS
Article
PubMed
Google Scholar
Bozzetto L, Costabile G, Della Pepa G et al (2018) Dietary fibre as a unifying remedy for the whole spectrum of obesity-associated cardiovascular risk. Nutrients 10:943. https://doi.org/10.3390/nu10070943
CAS
Article
PubMed Central
Google Scholar
Canfora EE, Jocken JW, Blaak EE (2015) Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 11:577–591. https://doi.org/10.1038/nrendo.2015.128
CAS
Article
PubMed
Google Scholar
Fushimi T, Tayama K, Fukaya M et al (2001) Acetic acid feeding enhances glycogen repletion in liver and skeletal muscle of rats. J Nutr J 13:1973–1977. https://doi.org/10.1093/jn/131.7.1973
Article
Google Scholar
Li H, Gao Z, Zhang J et al (2012) Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3. Diabetes 61(4):797–806. https://doi.org/10.2337/db11-0846
CAS
Article
PubMed
PubMed Central
Google Scholar
Li X, Chen H, Guan Y et al (2013) Acetic acid activates the AMP-activated protein kinase signaling pathway to regulate lipid metabolism in bovine hepatocytes. PLoS ONE 8:e67880. https://doi.org/10.1371/journal.pone.0067880
CAS
Article
PubMed
PubMed Central
Google Scholar
He J, Zhang P, Shen L et al (2020) Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. Int J Mol Sci 21:6356. https://doi.org/10.3390/ijms21176356
CAS
Article
PubMed Central
Google Scholar
Gao Z, Yin J, Zhang J et al (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58:1509–1517. https://doi.org/10.2337/db08-1637
CAS
Article
PubMed
PubMed Central
Google Scholar
Yamashita H, Maruta H, Jozuka M et al (2009) Effects of acetate on lipid metabolism in muscles and adipose tissues of type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Biosci Biotechnol Biochem 73:570–6. https://doi.org/10.1271/bbb.80634
CAS
Article
PubMed
Google Scholar
Yamashita H (2016) Biological function of acetic acid-improvement in obesity and glucose tolerance by acetic acid in type 2 diabetic rats. Crit Rev Food Sci Nutr 56:S171–S175. https://doi.org/10.1080/10408398.2015.1045966
CAS
Article
PubMed
Google Scholar
Chambers ES, Viardot A, Psichas A et al (2015) Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64:1744–1754. https://doi.org/10.1136/gutjnl-2014-307913
CAS
Article
PubMed
Google Scholar
Byrne CS, Chambers ES, Preston T et al (2019) Effects of inulin propionate ester incorporated into palatable food products on appetite and resting energy expenditure: a randomised crossover study. Nutrients 11:861. https://doi.org/10.3390/nu11040861
CAS
Article
PubMed Central
Google Scholar
Bouter K, Bakker GJ, Levin E et al (2018) Differential metabolic effects of oral butyrate treatment in lean versus metabolic syndrome subjects. Clin Transl Gastroenterol 9:155. https://doi.org/10.1038/s41424-018-0025-4
CAS
Article
PubMed
PubMed Central
Google Scholar
Bui TPN, de Vos WM (2021) Next-generation therapeutic bacteria for treatment of obesity, diabetes, and other endocrine diseases. Best Pract Res Clin Endocrinol Metab 17:101504. https://doi.org/10.1016/j.beem.2021.101504
CAS
Article
Google Scholar
Hosseini E, Grootaert C, Verstraete W, Van de Wiele T (2011) Propionate as a health-promoting microbial metabolite in the human gut. Nutr Rev 69:245–258. https://doi.org/10.1111/j.1753-4887.2011.00388.x
Article
PubMed
Google Scholar
Fu X, Liu Z, Zhu C, Mou H, Kong Q (2019) Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria. Crit Rev Food Sci Nutr 59:130–152. https://doi.org/10.1080/10408398.2018.1542587
CAS
Article
Google Scholar
Reynolds AN, Akerman AP, Mann J (2020) Dietary fibre and whole grains in diabetes management: systematic review and meta-analyses. PLoS Med 17:e1003053. https://doi.org/10.1371/journal.pmed.1003053
CAS
Article
PubMed
PubMed Central
Google Scholar
Barber TM, Kabisch S, Pfeiffer AFH, Weickert MO (2020) The health benefits of dietary fibre. Nutrients 12:3209. https://doi.org/10.3390/nu12103209
CAS
Article
PubMed Central
Google Scholar
Mardinoglu A, Wu H, Bjornson E et al (2018) An integrated understanding of the rapid metabolic benefits of a carbohydrate-restricted diet on hepatic steatosis in humans. Cell Metab 27:559–571. https://doi.org/10.1016/j.cmet.2018.01.005
CAS
Article
PubMed
PubMed Central
Google Scholar
Ang QY, Alexander M, Newman JC et al (2020) Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells. Cell 181:1263–1275. https://doi.org/10.1016/j.cell.2020.04.027
CAS
Article
PubMed
PubMed Central
Google Scholar