Skip to main content
Log in

Interleukin-6 as a potential positive modulator of human beta-cell function: an exploratory analysis—the Verona Newly Diagnosed Type 2 Diabetes Study (VNDS) 6

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Recent studies in mouse models of T2D showed that interleukin-6 (IL-6), released from skeletal muscle, is associated with increased glucose-dependent insulin secretion. Few data currently exist exploring the relationship between IL-6 and beta-cell function in humans. We investigated whether IL-6 is positively associated with beta-cell function in newly diagnosed T2D. We extended the same analyses to IL-10, because it regulated similarly to IL-6 in skeletal muscle, and TNF-α and C-reactive protein (CRP), as general biomarkers of inflammation.

Methods

In 330 VNDS participants, we assessed (1) basal plasma concentrations of IL-6, IL-10, TNF-α, and CRP; (2) beta-cell function, estimated by OGTT minimal modeling and expressed as derivative (DC) and proportional control (PC); (3) insulin sensitivity, by euglycemic insulin clamp.

Results

IL-6 was positively associated with PC in both univariate analysis (p = 0.04) and after adjustment for age, sex, BMI, HbA1c, and M-clamp (p = 0.01). HbA1c was the major independent contributor to the overall variance of PC (16 %), followed by BMI and IL-6 (~2 % each). Similar results were obtained for IL-10 (p = 0.048, univariate; p = 0.04, fully adjusted). TNF-α and CRP were not significantly associated with any component of beta-cell function.

Conclusions

Our data are the first evidence in human subjects that an endocrine loop involving IL-6 may act as positive modulator of glucose-dependent insulin secretion. Further functional studies are needed to corroborate IL-6 system as a potential druggable target in diabetes.

Clinical trial registration number

NCT01526720 (http://www.clinicaltrial.gov).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

VNDS:

Verona Newly Diagnosed Type 2 Diabetes Study

IL-6:

Interleukin-6

IL-10:

Interleukin-10

TNF-α:

Tumor necrosis factor-alpha

hsCRP:

High-sensitivity C-reactive protein

GLP-1:

Glucagon-like peptide-1

References

  1. Accili D (2004) Lilly lecture 2003: the struggle for mastery in insulin action: from triumvirate to republic. Diabetes 53(7):1633–1642

    Article  CAS  PubMed  Google Scholar 

  2. Odegaard JI, Chawla A (2013) Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science 339(6116):172–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ceriello A, Motz E (2004) Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? the common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 24(5):816–823

    Article  CAS  PubMed  Google Scholar 

  4. Bensellam M, Laybutt DR, Jonas JC (2012) The molecular mechanisms of pancreatic beta-cell glucotoxicity: recent findings and future research directions. Mol Cell Endocrinol 364(1–2):1–27

    Article  CAS  PubMed  Google Scholar 

  5. Freeman DJ, Norrie J, Caslake MJ et al (2002) West of Scotland Coronary Prevention S: C-reactive protein is an independent predictor of risk for the development of diabetes in the West of Scotland Coronary Prevention Study. Diabetes 51(5):1596–1600

    Article  CAS  PubMed  Google Scholar 

  6. Scheller J, Rose-John S (2012) The interleukin 6 pathway and atherosclerosis. Lancet 380(9839):338

    Article  PubMed  Google Scholar 

  7. Mohamed-Ali V, Goodrick S, Rawesh A et al (1997) Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab 82(12):4196–4200

    CAS  PubMed  Google Scholar 

  8. Mohamed-Ali V, Goodrick S, Bulmer K, Holly JM, Yudkin JS, Coppack SW (1999) Production of soluble tumor necrosis factor receptors by human subcutaneous adipose tissue in vivo. Am J Physiol 277(6 Pt 1):E971–E975

    CAS  PubMed  Google Scholar 

  9. Steensberg A, van Hall G, Osada T, Sacchetti M, Saltin B (2000) Klarlund Pedersen B: Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol 529(Pt 1):237–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Febbraio MA, Ott P, Nielsen HB et al (2003) Hepatosplanchnic clearance of interleukin-6 in humans during exercise. Am J Physiol Endocrinol Metab 285(2):E397–E402

    Article  CAS  PubMed  Google Scholar 

  11. Peake JM, Della Gatta P, Suzuki K, Nieman DC (2015) Cytokine expression and secretion by skeletal muscle cells: regulatory mechanisms and exercise effects. Exerc Immunol Rev 21:8–25

    PubMed  Google Scholar 

  12. Steensberg A, Keller C, Starkie RL, Osada T, Febbraio MA, Pedersen BK (2002) IL-6 and TNF-alpha expression in, and release from, contracting human skeletal muscle. Am J Physiol Endocrinol Metab 283(6):E1272–E1278

    Article  CAS  PubMed  Google Scholar 

  13. van Hall G, Steensberg A, Fischer C et al (2008) Interleukin-6 markedly decreases skeletal muscle protein turnover and increases nonmuscle amino acid utilization in healthy individuals. J Clin Endocrinol Metab 93(7):2851–2858

    Article  PubMed  Google Scholar 

  14. Perry RJ, Camporez JP, Kursawe R et al (2015) Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160(4):745–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Glund S, Deshmukh A, Long YC et al (2007) Interleukin-6 directly increases glucose metabolism in resting human skeletal muscle. Diabetes 56(6):1630–1637

    Article  CAS  PubMed  Google Scholar 

  16. Steensberg A, Fischer CP, Sacchetti M et al (2003) Acute interleukin-6 administration does not impair muscle glucose uptake or whole-body glucose disposal in healthy humans. J Physiol 548(Pt 2):631–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fosgerau K, Galle P, Hansen T et al (2010) Interleukin-6 autoantibodies are involved in the pathogenesis of a subset of type 2 diabetes. J Endocrinol 204(3):265–273

    Article  CAS  PubMed  Google Scholar 

  18. Halban PA, Polonsky KS, Bowden DW et al (2014) Beta-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. Diabetes Care 37(6):1751–1758

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shimizu H, Ohtani K, Kato Y, Mori M (2000) Interleukin-6 increases insulin secretion and preproinsulin mRNA expression via Ca2+-dependent mechanism. J Endocrinol 166(1):121–126

    Article  CAS  PubMed  Google Scholar 

  20. Suzuki T, Imai J, Yamada T et al (2011) Interleukin-6 enhances glucose-stimulated insulin secretion from pancreatic beta-cells: potential involvement of the PLC-IP3-dependent pathway. Diabetes 60(2):537–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ellingsgaard H, Ehses JA, Hammar EB et al (2008) Interleukin-6 regulates pancreatic alpha-cell mass expansion. Proc Natl Acad Sci USA 105(35):13163–13168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vozarova B, Weyer C, Hanson K, Tataranni PA, Bogardus C, Pratley RE (2001) Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. Obes Res 9(7):414–417

    Article  CAS  PubMed  Google Scholar 

  23. Kumar H, Mishra M, Bajpai S et al (2013) Correlation of insulin resistance, beta cell function and insulin sensitivity with serum sFas and sFasL in newly diagnosed type 2 diabetes. Acta Diabetol 50:511–518

    Article  CAS  PubMed  Google Scholar 

  24. Andreozzi F, Laratta E, Cardellini M et al (2006) Plasma interleukin-6 levels are independently associated with insulin secretion in a cohort of Italian–Caucasian nondiabetic subjects. Diabetes 55(7):2021–2024

    Article  CAS  PubMed  Google Scholar 

  25. American Diabetes A (2015) Classification and diagnosis of diabetes. Diabetes Care 38(Suppl):S8–S16

    Article  Google Scholar 

  26. Cretti A, Lehtovirta M, Bonora E et al (2001) Assessment of beta-cell function during the oral glucose tolerance test by a minimal model of insulin secretion. Eur J Clin Invest 31(5):405–416

    Article  CAS  PubMed  Google Scholar 

  27. Bonetti S, Trombetta M, Boselli ML et al (2011) Variants of GCKR affect both beta-cell and kidney function in patients with newly diagnosed type 2 diabetes: the Verona newly diagnosed type 2 diabetes study 2. Diabetes Care 34(5):1205–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bonetti S, Trombetta M, Malerba G et al (2011) Variants and haplotypes of TCF7L2 are associated with beta-cell function in patients with newly diagnosed type 2 diabetes: the Verona Newly Diagnosed Type 2 Diabetes Study (VNDS) 1. J Clin Endocrinol Metab 96(2):E389–E393

    Article  CAS  PubMed  Google Scholar 

  29. Bonadonna RC, Heise T, Arbet-Engels C et al (2010) Piragliatin (RO4389620), a novel glucokinase activator, lowers plasma glucose both in the postabsorptive state and after a glucose challenge in patients with type 2 diabetes mellitus: a mechanistic study. J Clin Endocrinol Metab 95(11):5028–5036

    Article  CAS  PubMed  Google Scholar 

  30. DeFronzo RA, Tobin JD, Andres R (1979) Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 237(3):E214–E223

    CAS  PubMed  Google Scholar 

  31. Ellingsgaard H, Hauselmann I, Schuler B et al (2011) Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med 17(11):1481–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445

    Article  CAS  PubMed  Google Scholar 

  33. Kim HJ, Higashimori T, Park SY et al (2004) Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo. Diabetes 53(4):1060–1067

    Article  CAS  PubMed  Google Scholar 

  34. Saraiva M, O’Garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10(3):170–181

    Article  CAS  PubMed  Google Scholar 

  35. Russell MA, Morgan NG (2014) The impact of anti-inflammatory cytokines on the pancreatic beta-cell. Islets 6(3):e950547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Westwell-Roper CY, Ehses JA, Verchere CB (2014) Resident macrophages mediate islet amyloid polypeptide-induced islet IL-1beta production and beta-cell dysfunction. Diabetes 63(5):1698–1711

    Article  CAS  PubMed  Google Scholar 

  37. Ferrannini E, Camastra S, Gastaldelli A et al (2004) Beta-cell function in obesity: effects of weight loss. Diabetes 53(Suppl 3):S26–S33

    Article  CAS  PubMed  Google Scholar 

  38. Levetan CS, Pierce SM (2013) Distinctions between the islets of mice and men: implications for new therapies for type 1 and 2 diabetes. Endocr Pract 19(2):301–312

    Article  PubMed  Google Scholar 

  39. Cobelli C, Toffolo GM, Dalla Man C et al (2007) Assessment of beta-cell function in humans, simultaneously with insulin sensitivity and hepatic extraction, from intravenous and oral glucose tests. Am J Physiol Endocrinol Metab 293(1):E1–E15

    Article  CAS  PubMed  Google Scholar 

  40. Mari A, Camastra S, Toschi E et al (2001) A model for glucose control of insulin secretion during 24 h of free living. Diabetes 50(Suppl 1):S164–S168

    Article  CAS  PubMed  Google Scholar 

  41. Cali AM, Bonadonna RC, Trombetta M, Weiss R, Caprio S (2008) Metabolic abnormalities underlying the different prediabetic phenotypes in obese adolescents. J Clin Endocrinol Metab 93(5):1767–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weiss R, Caprio S, Trombetta M, Taksali SE, Tamborlane WV, Bonadonna R (2005) Beta-cell function across the spectrum of glucose tolerance in obese youth. Diabetes 54(6):1735–1743

    Article  CAS  PubMed  Google Scholar 

  43. Gutteridge A, Rukstalis JM, Ziemek D et al (2013) Novel pancreatic endocrine maturation pathways identified by genomic profiling and causal reasoning. PLoS One 8(2):e56024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The technical help of Monica Zardini and Federica Moschetta (Department of Medicine, University of Verona, Verona, Italy) is gratefully acknowledged.

Funding

This study was supported in part by an EFSD/Novartis grant (to R.C.B.) and by research grants of University of Verona (to R.C.B. and E.B.). No additional external funding was received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author contribution

M.D. researched and analyzed data and co-wrote the manuscript. M.T. researched data and discussed the manuscript. M.L.B., L.S. researched and analyzed data. C.B. and I.P. researched data. E.B. designed the study, edited the manuscript, and provided substantial contribution to the overall discussion. R.C.B. designed the study, researched data, co-wrote, and edited the manuscript. M.D. and R.C.B. are the guarantors of this work and, as such, had full access to all the data in the study and take responsibility for the integrity and the accuracy of the data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo C. Bonadonna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to disclose.

Ethical standard

The VNDS was approved by the local Institutional Review Board, and all subjects gave written informed consent upon recruitment.

Human and animal rights disclosure

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008.

Informed consent disclosure

Informed consent was obtained from all patients for being included in the study.

Additional information

Managed by Antonio Secchi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 114 kb)

Supplementary material 2 (doc 206 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dauriz, M., Trombetta, M., Boselli, L. et al. Interleukin-6 as a potential positive modulator of human beta-cell function: an exploratory analysis—the Verona Newly Diagnosed Type 2 Diabetes Study (VNDS) 6. Acta Diabetol 53, 393–402 (2016). https://doi.org/10.1007/s00592-015-0807-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-015-0807-z

Keywords

Navigation