Skip to main content
Log in

Correlation of insulin resistance, beta cell function and insulin sensitivity with serum sFas and sFasL in newly diagnosed type 2 diabetes

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Pancreatic beta cell dysfunction and reduced insulin sensitivity are fundamental factors associated with glucotoxicity, lipotoxicity and oxidative stress in type 2 diabetic patients (T2DM). Diabetic milieu can induce apoptosis in several types of cells. The aim of present study was to compare circulating soluble apoptotic markers (sFas and sFas-L) with HOMA-IR, HOMA-%S, HOMA-%B in the serum of newly diagnosed T2DM and healthy subjects. For this study, 94 T2DM and 60 healthy subjects were enroled and evaluated for various parameters. Biochemical quantifications were performed with Syncron CX5 auto-analyzer. The levels of serum sFas-L, TNF-α and IL-6 were estimated by flowcytometry. The fasting serum insulin and sFas quantified by ELISA. HOMA-IR, HOMA-%S and HOMA-%B were calculated with HOMA calculator v2.2.2. The levels of TC, TG, LDL-C, VLDL-C were augmented and HDL declined significantly (P < 0.001) in diabetics. The levels of serum insulin, TNF-α, IL-6, sFas, HOMA-IR were raised (P < 0.001) and sFas-L, HOMA-%S and HOMA-%B were decreased significantly (P < 0.001) in T2DM subjects than healthy. In diabetics, serum sFas was positively correlated with HOMA-IR (r = 0.720, P < 0.001) and negatively with HOMA-%B (r = −0.642, P < 0.001) significantly while serum sFasL was negatively correlated with HOMA-IR (r = −0.483, P < 0.001) and positively with HOMA-%B (r = 0.466, P < 0.001) significantly. Further, the multivariate stepwise regression analysis shows that HOMA-IR contributes significantly to the variance of sFas and sFasL. Our findings suggest that the pancreatic beta cell dysfunction along with increased insulin resistance appears to be associated with apoptotic markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. International Diabetes Federation (2009) Diabetes Atlas 4th edn

  2. Reaven G (2004) The metabolic syndrome or the insulin resistance syndrome? Different names, different concepts, and different goals. Endocrinol Metab Clin N Am 33:283–330

    Article  Google Scholar 

  3. Velloso LA, Folli F, Sun XJ, White MF, Saad MJ, Kahn CR (1996) Cross-talk between the insulin and angiotensin signaling systems. Proc Natl Acad Sci 93:12490–12495

    Article  PubMed  CAS  Google Scholar 

  4. Folli F, Kahn CR, Hansen H, Bouchie JL, Feener EP (1997) Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels. J Clin Inves 100:2158–2169

    Article  CAS  Google Scholar 

  5. Abbasi F, Brown BW Jr, Lamendola C, McLaughlin T, Reaven GM (2002) Relationship between obesity, insulin resistance, and coronary heart disease risk. J Am Coll Cardiol 40:937–943

    Article  PubMed  CAS  Google Scholar 

  6. Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J et al (2002) The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 288:2709–2716

    Article  PubMed  Google Scholar 

  7. Rewers M, Zaccaro D, D’Agostino R, Haffner S, Saad MF, Selby JV et al (2004) Insulin sensitivity, insulinemia, and coronary artery disease: the insulin resistance atherosclerosis study. Diabetes Care 27:781–787

    Article  PubMed  CAS  Google Scholar 

  8. Saad MF, Rewers M, Selby J, Howard G, Jinagouda S, Fahmi S et al (2004) Insulin resistance and hypertension: the insulin resistance atherosclerosis study. Hypertension 43:1324–1331

    Article  PubMed  CAS  Google Scholar 

  9. Saely CH, Aczel S, Marte T, Langer P, Hoefle G, Drrexel H (2005) The metabolic syndrome, insulin resistance, and cardiovascular risk in diabetic and nondiabetic patients. J Clin Endocrinol Metab 90:5698–5703

    Article  PubMed  CAS  Google Scholar 

  10. Sandler S, Bendtzen K, Eizirik DL, Strandell E, Welsh M, Welsh N (1990) Metabolism and beta-cell function of rat pancreatic islets exposed to human interleukin-1beta in the presence of high glucose concentration. Immunol Lett 26:245–252

    Article  PubMed  CAS  Google Scholar 

  11. Maedler K, Spinas GA, Lehmann R, Sergeev P, Weber M, Fontana A et al (2001) Glucose induces beta-cell apoptosis via upregulation of the Fas receptor in human islets. Diabetes 50:1683–1690

    Article  PubMed  CAS  Google Scholar 

  12. Krammer PH (1998) The CD/95 (APO-1/Fas)/CD95L system. Toxicol Lett 102:131–137

    Article  PubMed  Google Scholar 

  13. Nagata S (1997) Apoptosis by death factor. Cell 8:355–365

    Article  Google Scholar 

  14. Tanaka M, Suda T, Haze K, Nakamura N, Sato K, Kimura F et al (1996) Fas ligand in human serum. Nat Med 2:317–322

    Article  PubMed  CAS  Google Scholar 

  15. Guillot R, Bringuier AF, Porokhov B, Guillausseau PJ, Feldmann G (2001) Increased levels of soluble Fas in serum from diabetic patients with neuropathy. Diabetes Metab 27:315–321

    PubMed  CAS  Google Scholar 

  16. American Diabetes Association (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Suppl. 1):S62–S69

    Article  Google Scholar 

  17. The Oxford Centre for Diabetes, Endocrinology & Metabolism: Diabetes Trial Unit. HOMA Calculator 2009 [http://www.dtu.ox.ac.uk/]

  18. Cai L, Li W, Wang GW, Guo LP, Jiang YC, Kang YJ (2002) Hyperglycemia induced apoptosis in mouse myocardium-mitochondrial cytochrome c-mediated caspase-3 activation pathway. Diabetes 51:1938–1948

    Article  PubMed  CAS  Google Scholar 

  19. Romeo G, Liu WL, Asnaghi V, Kern TS, Lorenzi M (2002) Activation of nuclear factor-kappa B induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. Diabetes 51:2241–2248

    Article  PubMed  CAS  Google Scholar 

  20. Faradji RN, Havari E, Chen Q, Gray J, Tornheim K, Corkey BE et al (2001) Glucose-induced toxicity in insulin-producing pituitary cells that coexpress GLUT2 and glucokinase-implications for metabolic engineering. J Biol Chem 276:36695–36702

    Article  PubMed  CAS  Google Scholar 

  21. Cheng J, Zhou T, Liu C, Shapiro JP, Brauer MJ, Kiefer MC et al (1994) Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science 263:1759–1762

    Article  PubMed  CAS  Google Scholar 

  22. Stalder M, Pometta D, Suenram A (1981) Relationship between plasma insulin levels and high density lipoprotein cholesterol levels in healthy men. Diabetologia 21:544–548

    PubMed  CAS  Google Scholar 

  23. Pykalisto OJ, Smith PH, Brunzell JD (1975) Determinants of human adipose tissue lipoprotein lipase: effect of diabetes and obesity on basal- and diet-induced activity. J Clin Invest 56:1108–1117

    Article  PubMed  CAS  Google Scholar 

  24. Sadur CN, Yost TJ, Eckel RH (1984) Insulin responsiveness of adipose tissue lipoprotein lipase is delayed but preserved in obesity. J Clin Endocrinol Metab 59:1176–1182

    Article  PubMed  CAS  Google Scholar 

  25. Golay A, Zech L, Shi MZ, Chiou YA, Reaven GM, Chen YD (1987) High density lipoprotein (HDL) metabolism in noninsulin-dependent diabetes mellitus: measurement of HDL turnover using tritiated HDL. J Clin Endocrinol Metab 65:512–518

    Article  PubMed  CAS  Google Scholar 

  26. Gual P, Le Marchand-Brustel Y, Tanti JF (2005) Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie (Paris) 87:99–109

    Article  CAS  Google Scholar 

  27. Zick Y (2001) Insulin resistance: a phosphorylation-based uncoupling of insulin signaling. Trends Cell Biol 11:437–441

    PubMed  CAS  Google Scholar 

  28. Tanti JF, Gremeaux T, Van Obberghen E, Le Marchand-Brustel Y (1994) Serine/threonine phosphorylation of insulin receptor substrate 1 modulates insulin receptor signaling. J Biol Chem 269:6051–6057

    PubMed  CAS  Google Scholar 

  29. Aguirre V, Uchida T, Yenush L, Davis R, White MF (2000) The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. J Biol Chem 275:9047–9054

    Article  PubMed  CAS  Google Scholar 

  30. Ozes ON, Akca H, Mayo LD, Gustin JA, Maehama T, Dixon JE et al (2001) A phosphatidylinositol 3-kinase/Akt/mTOR pathway mediates and PTEN antagonizes tumor necrosis factor inhibition of insulin signalling through insulin receptor substrate-1. Proc Natl Acad Sci 98:4640–4645

    Article  PubMed  CAS  Google Scholar 

  31. Gual P, Gremeaux T, Gonzalez T, Le Marchand-Brustel Y, Tanti JF (2003) MAP kinases and mTOR mediate insulin-induced phosphorylation of insulin receptor substrate-1 on serine residues 307, 612 and 632. Diabetologia 46:1532–1542

    Article  PubMed  CAS  Google Scholar 

  32. Bouzakri K, Roques M, Gual P, Espinosa S, Guebre-Egziabher F, Riou JP et al (2003) Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes. Diabetes 52:1319–1325

    Article  PubMed  CAS  Google Scholar 

  33. Engelman JA, Berg AH, Lewis RY, Lisanti MP, Scherer PE (2000) Tumor necrosis factor-α mediated insulin resistance, but not dedifferentiation, is abrogated by MEK1/2 inhibitors in 3T3–L1 adipocytes. Mol Endocrinol 14:1557–1569

    Article  PubMed  CAS  Google Scholar 

  34. Emanuelli B, Peraldi P, Filloux C, Sawka-Verhelle D, Hilton D, Van Obberghen E (2000) SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem 275:15985–15991

    Article  PubMed  CAS  Google Scholar 

  35. Ueki K, Kondo T, Kahn CR (2004) Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol Cell Biol 24:5434–5446

    Article  PubMed  CAS  Google Scholar 

  36. Rui L, Yuan M, Frantz D, Shoelson S, White MF (2002) SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem 277:42394–42398

    Article  PubMed  CAS  Google Scholar 

  37. Shi H, Cave B, Inouye K, Bjorbaek C, Flier JS (2006) Overexpression of suppressor of cytokine signaling 3 in adipose tissue causes local but not systemic insulin resistance. Diabetes 55:699–707

    Article  PubMed  CAS  Google Scholar 

  38. Rotter V, Nagaev I, Smith U (2003) Interleukin-6 (IL-6) induces insulin resistance in 3T3–L1 adipocytes and is, like IL-8 and tumor necrosis factor-α, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem 278:45777–45784

    Article  PubMed  CAS  Google Scholar 

  39. Lagathu C, Bastard JP, Auclair M, Maachi M, Capeau J, Caron M (2003) Chronic interleukin-6 (IL-6) treatment increased IL-6 secretion and induced insulin resistance in adipocyte: prevention by rosiglitazone. Biochem Biophys Res Commun 311:372–379

    Article  PubMed  CAS  Google Scholar 

  40. Warne JP (2003) Tumour necrosis factor-α: a key regulator of adipose tissue mass. J Endocrinol 177:351–355

    Article  PubMed  CAS  Google Scholar 

  41. Jager J, Grémeaux T, Cormont M, Le Marchand-Brustel Y, Tanti JF (2007) Interleukin-1 beta-induced insulin resistance in adipocytes through downregulation of insulin receptor substrate-1 expression. Endocrinol 148:241–251

    Article  CAS  Google Scholar 

  42. Monroy A, Kamath S, Chavez AO, Centonze VE, Veerasamy M, Barrentine A et al (2009) Impaired regulation of the TNF-alpha converting enzyme/tissue inhibitor of metalloproteinase 3 proteolytic system in skeletal muscle of obese type 2 diabetic patients: a new mechanism of insulin resistance in humans. Diabetologia 52:2169–2181

    Article  PubMed  CAS  Google Scholar 

  43. Federici M, Hribal ML, Menghini R, Kanno H, Marchetti V, Porzio O et al (2005) Timp3 deficiency in insulin receptor-haploinsufficient mice promotes diabetes and vascular inflammation via increased TNF-alpha. J Clin Invest 115:3494–3505

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors HK & MM are thankful to University Grant Commission (UGC), New Delhi for providing financial assistance under UGC-SRF and UGC-DS Kothari Postdoctoral scheme. Authors SB, AK & DP are grateful to CSIR & ICMR, New Delhi, India for fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamlakar Tripathi.

Additional information

Hemant Kumar and Manish Mishra contributed equally for this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, H., Mishra, M., Bajpai, S. et al. Correlation of insulin resistance, beta cell function and insulin sensitivity with serum sFas and sFasL in newly diagnosed type 2 diabetes. Acta Diabetol 50, 511–518 (2013). https://doi.org/10.1007/s00592-011-0307-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-011-0307-8

Keywords

Navigation